
AN UNCONSTRAINED NONLINEAR OPTIMIZATION SOLVER:

A USER’S GUIDE

1. Introduction

This modular software package has been designed to solve the unconstrained nonlinear

optimization problem. This problem entails finding the local minimum of a twice continuously

differentiable real-valued function f of n variables from a given start point x 0. Required input to

the routine includes the dimension of the problem n , a subroutine to evaluate the function f (x),

and an estimate x 0 of the minimum x *. In addition, the user may control the means for evaluating

first and second derivatives of the optimization function and specify various tolerances. Upon

completion, the program returns with an approximation x̂ to the local minimum x *, the value of

the function f (x̂), the value of the gradient g (x̂), and a flag specifying under which stopping con-

dition the algorithm was terminated. These algorithms are not intended for problems of dimen-

sion n=1. The program is inefficient for this case; the user is advised to find more suitable

software.

This implementation provides three separate global strategies a user may choose for locat-

ing a next iterate x k . These consist of a line search and two trust region methods known as

dogleg and hookstep (see section 3). The user may provide analytic first and second derivatives

of the optimization function, or elect to have them computed by finite differences or approxi-

mated by secant methods. A wide range of combinations of analytic and/or computed derivatives

is allowed (see section 2). The non-linear problem is a difficult one; no software package can

guarantee a correct solution for every case, but the alternatives provided here will hopefully

demonstrate utility in a greater number of circumstances.

These algorithms correspond closely, but not always exactly, to those in Numerical

Methods for Unconstrained Optimization and Nonlinear Equations by J. E. Dennis, Jr. and R. B.

Schnabel.

2. Computing the Gradient and Hessian

The program provides considerable flexibility in the computation of the gradient and Hes-

sian of the optimization function. The user may supply analytic routines for the gradient and/or

the Hessian. If derivatives are not supplied, the package contains an assortment of routines for

the computation of these quantities. These routines are invoked automatically in accordance with

the user’s choice of the parameters IAGFLG, IAHFLG and IEXP which specify whether an ana-

lytic gradient has been provided, whether an analytic Hessian has been provided and whether the

optimization function is expensive to evaluate respectively (see section 6). Table A summarizes

the use of these modules.

- 2 -

Secant methods do not require evaluation of the optimization function when obtaining the

Hessian, whereas finite difference techniques do. When the user’s optimization function routine

FCN is expensive to evaluate, it is usually beneficial to set IEXP=1 in order to minimize the

number of function evaluations. Occasionally, it may be less expensive to use secant methods

than analytic or finite difference Hessians, even when the function evaluation is inexpensive. The

secant update used is the Broyden, Fletcher, Goldfarb and Shanno (BFGS) update.

The default values are:

IAGFLG = 0

IAHFLG = 0

IEXP = 1

TABLE A

MODULES USED TO COMPUTE GRADIENT AND HESSIAN

DEPENDENT ON AVAILABILITY OF ANALYTIC ROUTINES

Availability of Module used for

analytic g? analytic H? expensive f? gradient Hessian

Yes Yes --- user g user H

Yes No No user g FSTOFD

Yes No Yes user g SECFAC*

SECUNF

No No No FSTOFD SNDOFD

No No Yes FSTOFD SECFAC*

SECUNF

No Yes --- FSTOFD user H

NOTE: FSTOFD = first order finite difference

SNDOFD = second order finite difference

SECFAC = secant update, factored

SECUNF = secant update, unfactored

* The factored secant update is used with line search and dogleg strategies; the unfactored secant

update is used with the hookstep strategy.

- 3 -

3. Choice of Method

Three global strategies have been implemented in this software package. There is a line

search and two trust region algorithms, known as the dogleg and hookstep (also known as locally

constrained optimal step, or Levenberg-Marquardt step). Unless the user specifies differently, the

package will employ the line search technique to locate a new iterate. The relative performance

of the alternative methods will vary from problem to problem. Unfortunately, there are no a

priori means of knowing which method will perform better in a particular situation. Conse-

quently, if the user is solving a class of problems, it may pay to sample each method in turn and

to choose the one that works best. The default choice is the line search.

4. Control of Output

The standard (default) output from this package consists of printing the input parameters

and the final results. The reported input is as it will be taken by the algorithm and hence includes

any corrections made by the program module OPTCHK, which examines the input specifications

for illegal entries and consistency (see section 6). The program will provide an error message if it

terminates as a result of input errors. The printed results include a termination indicator, an

approximation x̂ to the minimum, the optimization function f evaluated at x̂ , and the gradient

vector g evaluated at x̂ .

The package provides two additional means for the control of output. One means is the

variable MSG described in section 6. In addition, WRITE (IPR,.) statements have judiciously

been scattered throughout the code of the global method subroutines, but concealed on special

comment cards that have the characters C@ in columns 1-2. A user with access to an editor

which performs string replacement can remove the characters C@ with the concomitant result of

compiling these WRITE statements. This will permit the user to obtain a detailed history of the

calculations within each iteration.

5. Interfaces

To accommodate both casual and sophisticated users, two interfaces have been provided

with the system. OPTIFO requires the user to provide only the dimension n of the problem, a

subroutine to evaluate the optimization function f and a starting vector x 0. Certain storage arrays

must also be declared (see A, WRK in section 6). OPTIF9 requires the user to supply all parame-

ters. The user may specify selected parameters only by first invoking the subroutine DFAULT

which sets all parameters to their default values, and then overriding the desired values. Two

examples of calling sequences are given below.

i) CALL OPTIFO (NR,N,X,FCN,XPLS,FPLS,GPLS,ITRMCD,A,WRK)

ii) CALL DFAULT (N,X,TYPX,TYPF,METHOD,IEXP,MSG,NDIGIT,ITNLIM,

IAGFLG,IAHFLG,IPR,DLT,GRADTL,STEPMX,STEPTL)

- 4 -

C

C USER OVERRIDES SPECIFIC DEFAULT PARAMETERS, E.G.

GRADTL = 1.0 E-9

STEPMX = 1.0 E-9

METHOD = 2

C

CALL OPTIF9 (NR,N,X,FCN,D1FN,D2FN,TYPX,TYPF,METHOD,IEXP,MSG,

NDIGIT,ITNLIM,IAGFLG,IAHFLG,IPR,DLT,GRADTL,STEPMX,

STEPTL,XPLS,FPLS,GPLS,ITRMCD,A,WRK)

6. Parameters

The parameters employed with the calling sequences of section 5 are fully described here.

OPTIFO uses only those parameters which are preceded by an asterisk. When it is noted that

module DFAULT returns a given value, this is the default employed by interface OPTIFO. The

user may override the default value by utilizing interface OPTIF9.

Following each variable name in the list below appears a one- or two-headed arrow symbol

of forms -->, <--, and <-->. These symbols signify that the variable is for input, output, and

input-output respectively.

* NR --> A positive integer specifying the row dimension of the matrices A and WRK

in the user’s calling program. NR must satisfy the relation NR ≥ N. (see N).

The provision of this variable allows the user the flexibility of solving

several problems of different order N one after the other.

* N --> A positive integer specifying the order or dimension of the problem. The

program will abort if N ≤ 0. The program is inefficient for the one-

dimensional case (N=1); the user is advised to find more efficient software.

The package will abort for N=1 unless the parameter MSG is appropriately

set (see MSG); in this instance the interface OPTIF9 must be utilized.

* X(N)<--> An N-dimensional array which contains an initial estimate of the minimum

x *. On return X will contain x k−1, the next-to-last iterate.

* FCN --- The name of a user supplied subroutine that evaluates the optimization func-

tion at an arbitrary vector X. The subroutine must be declared EXTERNAL

in the user’s calling program and must conform to the usage:

CALL FCN (N,X,F)

where X is a vector of length N. The subroutine must not alter the values of

X or N. On return F is the value of the optimization function at X.

- 5 -

D1FN -- The name of a user supplied subroutine that evaluates the first derivative

(gradient) of the optimization function. The subroutine must be declared

EXTERNAL in the user’s program and must conform to the usage

CALL D1FN (N,X,G)

where X and G are vectors of length N. The subroutine must not alter the

values of X or N. On return G is the value of the gradient at X. When using

the interface OPTIF9, if no analytic gradient routine is supplied

(IAGFLG=0), the user must use the dummy name D1FCN.

The program will automatically check the analytic derivative against a

numerical derivative by comparing the user’s gradient with a finite differ-

ence estimate to within a relative tolerance computed as follows:

relative noise = max{10−NDIGIT,machine ε }

relative tolerance = max {10−2,√������������relative noise}

where NDIGIT is the number of good digits in the optimization function and

machine ε is the smallest ε>0 such that 1+ε>1 on the machine. To override

this feature the parameter MSG must be appropriately set (see MSG).

D2FN -- The name of a user supplied subroutine that evaluates the second derivative

(Hessian) of the optimization function. The subroutine must be declared

EXTERNAL in the user’s calling program and must conform to the usage

CALL D2FN (NR,N,X,H)

where X is a vector of length N and H is an N x N matrix. The subroutine

must not alter the values of X or N. On return H is the value of the Hessian

at X. When using the interface OPTIF9, if no analytic Hessian routine is

supplied (IAHFLG=0), the user must use the dummy name D2FCN.

The program will automatically check the analytic Hessian against a numer-

ical Hessian by comparing the user’s Hessian with a finite difference esti-

mate to within a relative tolerance computed as follows:

relative noise = max{10−NDIGIT,machine ε}

relative tolerance = max{10−2,√������������relative noise}

- 6 -

where NDIGIT is the number of good digits in the optimization function.

To take advantage of this feature the user Hessian routine should fill only

the lower triangular elements of the matrix H. To override this feature the

parameter MSG must be appropriately set (see MSG).

TYPX(N) <--> An n-dimensional array in which the typical size of the components of X are

specified.

The typical component sizes should be positive real scalars. If a negative

value is specified, its absolute value will be used. When 0. is specified, 1.0

will be used. The program will not abort.

This vector is used by the package to determine a scaling matrix. Although

the package may work reasonably well in a large number of instances

without scaling, it may fail when the components of x * are of radically dif-

ferent magnitudes and scaling is not invoked. If the sizes of the parameters

are known to differ by many orders of magnitude, then the scale vector

TYPX should definitely be used.

Module DFAULT returns TYPX = (1.,...,1.). For example, if it is antici-

pated that the range of values for the iterates x k would be

x 1 ε [−1010,1010]

x 2 ε [−102,104]

x 3 ε [−6 × 10−6,9 × 10−6]

then an appropriate choice would be TYPX = (1.E10, 1.E3, 7.E-6).

TYPF <--> A positive scalar estimating the magnitude of the optimization function near

the minimum x *. If too large a value is provided for TYPF, the program

may terminate prematurely. In particular, if f (x 0) is >> f (x *), TYPF should

be approximately f (x *), not f (x 0).

If a negative value is specified its absolute value will be used. When 0. is

specified, 1.0 will be used. The program will not abort. The module

DFAULT returns the value 1.0.

For example, if f (x *) ˜ 104, then an appropriate choice would be TYPF =

1.E4.

- 7 -

METHOD<--> An integer flag designating which global strategy to use as follows:

= 1 Line search algorithm

= 2 Dogleg trust region algorithm

= 3 Hookstep trust region algorithm

Module DFAULT returns value of 1. If the user specifies an illegal value,

module OPTCHK will set METHOD = 1; program will not abort. For

further information, see section 3.

IEXP <--> An integer flag specifying whether or not the optimization function subrou-

tine is expensive to evaluate as follows:

= 0 function evaluation is not expensive

= 1 function evaluation is expensive

When IEXP = 1 and IAHFLG = 0, secant methods will be employed to

obtain the second derivative (Hessian) of the optimization function. When

IEXP = 0 and IAHFLG = 0, finite difference methods will be used to obtain

the Hessian. When IAHFLG = 1, IEXP is ignored.

Module DFAULT returns value of 1. If the user specifies an illegal value,

module OPTCHK will set IEXP = 1. The program will not abort. For more

information, see section 2.

MSG <--> An integer variable which the user may set on input to inhibit certain

automatic checks or override certain default characteristics of the package.

There are currently five "message" features which can be used individually

or in combination.

= 0 No message.

= 1 Do not abort package for N=1.

= 2 Do not check user analytic gradient routine D1FN

against

its finite difference estimate. This may be necessary if the

user knows his gradient function is properly coded, but the

program aborts because the comparative tolerance is too

tight. It is also efficient if the gradient has previously been

checked. Do not use MSG=2 if the analytic gradient is not

supplied.

- 8 -

= 4 Do not check user analytic Hessian routine D2FN

against its

finite difference estimate. This may be necessary if the

user knows his Hessian function is properly coded, but the

program aborts because the comparative tolerance is too

tight. It is also efficient if the Hessian has previously been

checked. Do not use MSG=4 if the analytic Hessian is not

supplied.

= 8 Suppress printing of the input state, the final results,

and

the stopping condition.

= 16 Print intermediate results.

The user may specify a combination of features by setting MSG to the sum

of the individual components. As an example, suppose the user wishes to

override automatic comparison of his analytic Hessian routine and to

suppress the automatic outputting of all results. The user would set

MSG=4+8=12.

The module DFAULT returns a value of 0. If the user specifies an illegal

value, its value MOD 32 will be used.

On output, if the program has terminated because of erroneous input

(ITRMCD=0), MSG contains an error code indicating the reason.

= 0 No error. (See ITRMCD for termination code)

= -1 Illegal dimension, N≤0.

= -2 Attempt to run program for N=1. (See N, MSG above)

= -3 Illegal tolerance on gradient, GRADTL<0.

= -4 Iteration limit ITNLIM≤0.

= -5 No good digits in optimization function, NDIGIT=0.

- 9 -

= -6 Program asked to override check of analytic gradient

against finite difference estimate, but routine D1FN not

supplied. (Incompatible input: MSG=0 mod 2 and

IAGFLG=0)

= -7 Program asked to override check of analytic Hessian

against finite difference estimate, but routine D2FN not

supplied. (Incompatible input: MSG=0 mod 4 and

IAGFLG=0)

= -21 Probable coding error in the user’s analytic gradient

routine D1FN. Analytic and finite difference gradients do

not agree within the assigned tolerance. (See computation

of tolerance under D1FN)

= -22 Probable coding error in the user’s analytic Hessian

routine D2FN. Analytic and finite difference Hessians do

not agree within the assigned tolerance. (See computation

of tolerance under D2FN).

NDIGIT <-> The integer number of reliable digits returned by the optimization function

FCN. This parameter is used in calculating finite difference stepsizes and

checking analytic derivatives. If the function routine FCN provides the full

number of significant digits obtainable on the host computer, enter -1 (or

any negative integer).

For example, if the optimization function FCN is the result of an iterative

procedure (e.g., quadrature, partial differential equations) which is expected

to provide 5 good digits in the answer, the user should set NDIGIT=5. If

FCN does not invoke an iterative procedure, NDIGIT=-1 is usually

appropriate.

The module DFAULT returns the value -1. If the user sets NDIGIT=0, that

is the minimization function has no good digits, the program aborts.

Specification of this parameter provides the software with an estimate of the

relative error (noise) in the evaluation of the function, computed as

η = max{10−NDIGIT,machine ε}.

ITNLIM <-> Positive integer specifying the maximum iterations to be performed before

the program is terminated. Module DFAULT returns the value 150. If the

user specifies ITNLIM≤0, the program will abort.

- 10 -

IAGFLG <-> Integer flag designating whether or not an analytic gradient function D1FN

has been supplied by the user.

= 0 No user analytic gradient supplied

= 1 User analytic gradient supplied

When IAGFLG=0, the gradient vector is obtained by a first order finite

difference method.

The module DFAULT returns the value 0. If the user specifies an illegal

value, the module OPTCHK will supply the value 0. If the user sets

IAGFLG=1 but fails to provide the subroutine D1FN the program will abort

in either the loading or execution phase, depending on the operating system.

IAHFLG <-> Integer flag designating whether or not an analytic Hessian function D2FN

has been supplied by the user.

= 0 No user analytic Hessian supplied

= 1 User analytic Hessian supplied

When IAHFLG=0, the Hessian matrix is obtained by a finite difference

method if IEXP=0 or by a secant update method if IEXP=1.

The module DFAULT returns the value 0. If the user specifies an illegal

value, the module OPTCHK will supply the value 0. If the user sets

IAHFLG=1 but fails to provide the subroutine D2FN, the program will abort

either in the loading or execution phase, depending on the operating system.

IPR --> The unit on which the routine outputs information. DFAULT returns the

value 6 which is the standard FORTRAN unit for the printer.

DLT <--> Positive scalar giving the initial trust region radius. When using the line

search global strategy this parameter is ignored. For trust region algorithms,

if it is supplied, its value should reflect what the user considers a maximum

reasonable scaled step length at the first iteration. If not supplied (DLT =

-1.), the routine uses the length of the scaled gradient instead.

The module DFAULT returns the value -1. If the user specifies a negative

value, module OPTCHK sets DLT = -1.

GRADTL --> Positive scalar giving the tolerance at which the scaled gradient is con-

sidered close enough to zero to terminate the algorithm. The scaled gradient

- 11 -

is a measure of the relative change in f in each direction xi divided by the

relative change in xi . More precisely, the test used by the program is

(1)
i

max
�
�
� max{ | f | ,typf }
|∇ f (x)i |max{ | xi | ,typxi }�����������������������

�
�
�
≤gradtl .

The module DFAULT returns the value 1.0E-5. If the user specifies a nega-

tive value the program aborts.

STEPMX --> A positive scalar providing the maximum allowable scaled step length.

STEPMX is used to prevent steps which would cause the optimization func-

tion to overflow, to prevent the algorithm from leaving the area of interest in

parameter space, or to detect divergence in the algorithm. STEPMX should

be chosen small enough to prevent the first two of these occurences but

should be larger than any anticipated "reasonable" step. The algorithm will

halt and provide a diagnostic if it attempts to exceed STEPMX on five suc-

cessive iterations.

Module DFAULT returns the value

STEPMX = max{ | | x | | 2* 103,103}

where X is the user provided initial guess of the minimum.

STEPTL --> A positive scalar providing the minimum allowable relative step length.

STEPTL should be set to 10−p where p is the number of digits of agreement

between successive iterates of X which the user considers as a satisfactory

test of convergence. The actual test used is

(2)
i

max
�
�
� max{ | xi

k | ,typxi }
| xi

k−xi
k−1 |���������������

�
�
�
≤steptl .

Values of p between 3 and 7 are common when using machines such as dou-

ble precision arithmetic (or single precision large word Control Data or

CRAY). Values between 3 and 5 are usual when using single precision.

Module DFAULT returns the value 1.0E-5.

* XPLS(N) <-- An N-dimensional array containing the best approximation to the local

minimum upon return (if the algorithm has converged).

* FPLS <-- A real scalar containing the function value at the approximate minimum (if

the algorithm has converged).

* GPLS(N)<-- An N-dimensional array containing the gradient of the optimization function

at the approximate minimum (if the algorithm has converged).

- 12 -

* ITRMCD <-- An integer which specifies the reason the algorithm was terminated.

= 0 Erroneous input detected. (see MSG)

= 1 Relative gradient is close to zero (see equation 1).

Current iterate is probably solution.

= 2 Successive iterates within tolerance (see equation 2).

Current iterate is probably solution.

= 3 Last global step failed to locate a point lower than

XPLS. Either XPLS is an approximate local minimum of the func-

tion, the function is too non-linear for this algorithm, or STEPTL is

too large.

= 4 Iteration limit exceeded.

= 5 Maximum step size STEPMX exceeded five consecutive

times. Either the function is unbounded below, becomes asymtotic

to a finite value from above in some direction, or STEPMX is too

small.

* A(NR,NC) --> A real matrix array which is used to store the Hessian and its Cholesky

decomposition. The user must declare this array of dimensions NRxNC in

the calling program where both NR ≥ N and NC ≥ N. Only the upper left

NxN sub-matrix will be used by this package. (Since stopping criteria are

checked before the Hessian or its estimate is updated, the Hessian at XPLS

is not available upon return.)

* WRK(NR,i) --> Workspace required by the program:

i = 9 when using interface OPTIF0

i = 8 when using interface OPTIF9

The user must declare this array in the calling routine. The workspace is

broken into i NR-vectors by the interface modules, where NR ≥ N. Note

that i may be greater than the integer specified here. The flexibility in the

dimensions here allows the user to utilize this space to the user’s advantage

in the user’s driving program.

- 13 -

7. Summary of Default Values

The following list summarizes the default parameter values returned by module DFAULT.

When the interface routine OPTIF0 is employed, these default values are used by the program

Parameter

TYPX (1.,...,1.)

TYPF 1.0

METHOD 1

IEXP 0

MSG 0

NDIGIT -1

ITNLIM 150

IAGFLG 0

IAHFLG 0

IPR 6

DLT

GRADTL 1.0E-5

STEPMX max | | x 0 | | 2* 103,103 where x 0 is user’s estimate of x *

STEPTL 1.0E-5

8. Implementation Details

This program package has been coded in strict accordance to the 1966 ANSI FORTRAN

standards; hence, it should port with no great difficulty to any machine of sufficient core capacity.

The program was developed and tested on a Control Data 7600 at the National Center for Atmos-

pheric Research in Boulder, Colorado.

The program package is self-contained except for inline function calls to SQRT and

ALOG10 which, since they are described by the FORTRAN standards, should be resident on

each host system.

There are a few machine dependencies. The printer is assumed to be FORTRAN unit 6.

This value is set in module DFAULT and may easily be changed if the FORTRAN output unit

does not conform to standard practice. WRITE statements for real quantities use an E20.13 for-

mat specification that is quite suitable for CDC 7600 single precision real values which contain

14 or 15 significant decimal digits. It is rather unappropriate for 32 or 36 bit single precision

words. An installation might find it convenient to modify the code to render it a double precision

implementation.

Finally, an installation may find it convenient to provide additional interfaces to its user

community. These may be easily constructed in three steps, modeled on module OPTIF0: (1)

- 14 -

initiate a call to the module DFAULT; (2) override appropriate default parameter values; (3) ini-

tiate a call to module OPTDRV. For instance, if an installation finds that it is common practice

for its users to supply an analytic gradient routine, to control scaling, and to use the dogleg stra-

tegy, an interface may be provided with the following framework:

SUBROUTINE OPTIF1 (NR,N,X,FCN,D1FN,TYPX,XPLS,

FPLS,GPLS,ITRMCD,A,WRK)

C

C NOTE: THE DUMMY ARRAY WRK(1,1) IS SUPPLIED

C IN PLACE OF ’TYPX’ SO THAT USER’S SUPPLIED

C VALUE OF ’TYPX’ IS NOT OVERWRITTEN

C

CALL DFAULT (N,X,WRK(1,1),...)

IAGFLG=1

METHOD=2

C

CALL OPTDRV.(...)

The provision of alternative interfaces may be an expedient labor saving device.

- 15 -

9. References:

More, J.J., B.S. Garbow, and K.E. Hillstrom (1981), "Testing unconstrained optimization

software," A.C.M. Transactions on Mathematical Software 7, pp. 17-41.

Dennis, J.E. Jr., and R.B. Schnabel (1983), Numerical Methods for Unconstrained Optimiza-

tion and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, N.J.

Introduction .. 1
Computing the Gradient and Hessian .. 1
Choice of Method .. 3
Control of Output .. 3
Interfaces .. 3

Parameters .. 4
Summary of Default Values ... 13
Implementation Details .. 13
References .. 15

