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Abstract: The original Shapiro-Wilk statistic is extended for testing normality when the observations are Type I or Type II censored. 

We determine its large sample limit distribution under Type I or Type II censoring. This censored data limit distribution has an 

interesting relation to the complete sample solution and is obtained from it by replacing each Hermite polynomial with a censored 

data form. The same limit distribution also applies to several variants of the Shapiro-Wilk statistic which are related to the 

correlation coefficient associated with a normal probability plot. 
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1. Introduction 

Let X=[X,,,..., X,,]’ be the vector of order statistics from a random sample of size n. A commonly 
applied check for normality is to calculate the Shapiro-Wilk (1965) statistic, IV, 

where m, V are the expectation vector and covariance matrix of the order statistics from a sample of n 
standard normal random variables. One popular variant, the Shapiro and Francis (1972) statistic, is 
obtained by replacing V by the identity I. 

Filliben (1975) and Ryan and Joiner (1973) noted that the Shapiro-Francis statistic could be written as 
the square of the correlation coefficient associated with a normal probability plot. Filliben proposed 
calculating the correlation coefficient from a plot of Xin versus the median, M,,, of the ith order statistic 
from a sample of n standard normal variables and Ryan and Joiner (1973) proposed using the closely 
related score H,, = H(i/(n + 1)) where H( ) is the inverse of the standard normal c.d.f. 
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An extension of these latter statistics to Type II censored data takes the form 

[flW 

C (4n-xn,8)(bin-bn,8) 

r(X, 6, 6) = 
I=1 

( ~~~(xi.-x.,,)z~~(6..-i,a)?)1’2 
(1.2) 

where 0 < 6 < 1, [ ] is the greatest integer function, 

[n&l [nN 

L = c WWI~ x7,8 = c x,n/Wl 
i=l i=l 

and bi, = H,,, Mi,, or a related score. 
The Type I censored data version has the same form except that the upper limit of summation and 

divisor for the mean is replaced by the random number of order statistics observed. 
Our censored data extension of the Shapiro-Wilk statistic is obtained by replacing b in (1.2) by 

a = Y’m. 
Smith and Bain (1976) proposed (1.2) with the normal scores Hi,. 
The major result in this paper, the limit distribution of r(X, H, S), is presented in Theorem 1 below. 

Leslie, Stephens and Fotopoulos (1986) established the asymptotic equivalence of r(X, H, 1) and 
r(X, a, 1). Verrill and Johnson (1987, 1988a) established the asymptotic equivalence of r(X, H, 6) with 
r(X, b, S) for a wide class of alternative scores, b (including the Shapiro-Wilk scores, a). Verrill and 

Johnson (1988a) also provide tables of critical values and discuss a small sample power study. 
Before proceeding with the statement and proof of Theorem 1, we need to define a number of 

constants. The definitions are analogous to those in DeWet and Venter (1972, 1973). Let 

Let 

where (p(x) is the standard normal p.d.f. 
Let 

0 - 
a,,8 - 

‘fy (i/( n + l))(l - i/( n + 1)) 

i=l d(Hin)(n + 1) ’ 

(1.4) 

where 
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and 

Define 

x(1-y) if x<y, 

(1-x)y ifx>y. 

an,6 = 
0 r _aJr 

a,,8 - an.6 lZ,6. 

Further, set 

0.5) 

K,,~ = ; fH(x) dx, 

K 
1 (l-x) 

q,(~(~)) dx’ Ke,s= ’ 

(1.6) 

and then let 

1 
522.6 

1 1 K:S 
= 2 -%’ J,,,a=l - 3 -G’ 

J -21/2+, J2o,6= - 21’2( K,,, - KI,,Kd,B) 
21 ,s - 

3.8 SK,., ’ 

J 
whK,t? - K1,6Kd,6) - &,&3.d 

10.6 = 
SK,., 

9 

(1.7) 

J 00,s = - 
We,, - ~,,&,d2 + K3>8K,2,8 _ K 

SK3.8 
c.s . 

2. The limit distribution 

Our approach extends the methods of DeWet and Venter (1972, 1973) who established the asymptotic 
theory for the complete sample case. 

The limit distribution is expressed in terms of truncated versions of the Hermite polynomials: 

(0 for x = O,l, 

1 

g,(x) = (2”m!)r/2h” 
for x E (0, 61, 

&lw for x E (8, l), 

(2.1) 

where h,, m = 0, 1,. . . , is the mth Her-mite polynomial (see Rainville, 1960). Note that we have sup- 

pressed the dependence of g,,,(x) on S. 

Theorem 1. Let t,f8 be given by (1.3), a,,& by (1.5), K,,, by (1.6), and the constants JiTs, i 2 j = 0, 1, 2, by 
(1.7). For random samples from a normal distribution, 

2[nal(l- r(X, H, 6)) - a,.~/t& 2 %/KU 
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where 

and for every M, the random variables W,, WI,. . . , W, have a joint multivariate normal distribution with 
expectation vector 0 and covariance matrix C, M + ,) x ( ,,, + ,) = (a,,), where qj = 10’ g,(x)g,(x) dx and the g,,, 
are defined in (2.1). 

Remarks. (1) The same limit distribution applies to the statistic r(X, b, 6) with, for example, bi, = 

M,,, mrn3 am, or the Weisberg-Bingham (1975) scores. (See Verrill and Johnson (1987, 1988a).) 

(2) The case of no censoring corresponds to 6 = 1 and the orthogonality of the Hermite polynomials 
then implies that the covariance terms a,, = 0, i #j. The censoring introduces correlations among the 
terms of the series for Y,. Also, with no censoring, all of the Jlj,& equal zero so our representation reduces 
to that given by DeWet and Venter (1972, 1973). 

(3) The limit distribution also applies to the squared correlation statistic. Replace 2[ nS](l - r( X, H, 6)) 
by [n6](1 - r’(X, H, 8)). 

(4) The same limit result is obtained for the Type I censored data correlation statistic. (See Verrill and 
Johnson (1988a, equation (4.4)) and Verrill (1981) for details on the equivalence of the limits under Type I 
and Type II censoring.) 

Proof of Theorem 1. We present the main steps for extending DeWet and Venter (1972, 1973) to the case 
of Type II censoring. More details and the Type I censoring solution are given in Verrill(l981). 

Because r(X, H, S) is invariant under location and scale changes, without loss of generality, we take 
X,, < * . . < x,, to be standard normal order statistics. Following DeWet and Venter (1972), we expand 
N( ) to obtain 

&=H(q,)=&fH’ ---& ( I( Q--& ) + W(!,*)( Y, - &fj2 
where Ui, is the ith order statistic from a uniform distribution, and Uiz lies between q,, and i/(n + 1). 
After some algebra, we obtain 

In61 

where 

c (x,, - %,)2t,2,& - r2(X, H, a>> 
r=l 

= ti,s( Q,,, - [na]y,?,s - [n~]%?,/t,z,,) +&,a (2.2) 

The remainder term, Rn,6, which contains the higher order derivatives, converges to zero in probability. 
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The next important step is to employ the well known relation 

i ?I+1 
lJn = c z;“/ c z,* 

j=l j=l 

between uniform order statistics and independent standard exponential variables. Setting Zj = Z,* - 1, 
from (2.2) we have 

[nsl 

c (Jk - %,J)~(I - r2(X, H, 6)) -a,,, 
i=l 

LY - an,& + K,.&,, (2.3) 

where 

n+l n+l 

T.8 = C C (ckh.6 -dkln.d - ekln.6) zk 4 
k=l I=1 (n + 1)1’2 (n + l)r’* ’ 

the Z, are independent and identically distributed as standard negative exponentials minus 1, 

CkIn,S = 

d kin.8 = 

ekln.S = 

and 

n+l 3 

‘;Hi+ -i) ‘;H;+&,&) n+l 
i=l 

n+l’n+l 
j=l 

n+l n+l WI ’ 

‘ZHk(H.o-H.,~)G( &.A) 
i=l 

n+l 

‘?Hh(Hjn-En,8)#( &PA) 

j=l n+l 
n+l bW8 

(2.4 

A straightforward, but tedious analysis establishes several needed facts (see Verrill, 1981, Chapter 2 for 
details): 

InSI 
(ii) c (K, - %,,)‘/[nSI : K,,,, 

i=l 
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(iii) t2 - l$;&$,[nS] ‘“r(&), n.6 
i=l 

(iv> E(T,,,) = u,,~ = o(ln H). 

Now, provided that T,,, - E(T,,,) has a limit distribution, L,, (i)-(iv) and (2.3) imply that 

[nSl(I - r2(X, H, 8)) -a,.&, 2 La/K,,,. 

Since a,*,/t,2,, = o(n’j2), 

n”‘(1 - r(X, H, S))(l + r(X, H, 6)) : 0. 

(2.5) 

So, since r(X, H, 6) >, 0, n”2(1 - r(X, H, 6)) 5 0, and we can apply a Slutsky result to (2.5) to obtain 

2[4(1 - r(X, H, 6)) -an&a z b/K,,,. (2.6) 
Thus, to complete the proof of the theorem we need to verify that 

D 
T,., - E(T,.d + r,. (2.7) 

We do so in three main steps. 

(1) Develop approximations c&+ d&,,,s, ek*l,,,S to Ck/n,6, dkln,a, ekln.S. 

(2) Show that 

where 

D 

n+l n+1 

T,Ts = c c (c&,~-d&~ - ei’b) zk z, 
k=l I=1 (n + 1)1’2 (n + 1)1’2 . 

(2.8) 

(3) Show that 

E[(KT,-E(T,%- [T,.c%~)])~] +O asn-,co. (2.9) 

The approximations c&+ dk*ln,SJ elb It is clear from (2.4) that ck1n,6 behaves like c,(k/(n + l), 

f/(n + 1)) where 

It is possible to express c,(x, y) in an alternate form. To see this, consider 

(2.10) 

(2.11) 

which arises in the complete sample case considered by DeWet and Venter (1973). Because c,(x, y) is 
symmetric in x, y and (by properties of the normal distribution) square integrable on [0, 112, DeWet and 
Venter were able to express c,(x, y) as the quadratic limit of Cz=, h,f,(x)f,(y) where the A, are the 
eigenvalues and the f,(x) are the normalized eigenfunctions of the kernel c,(x, y). In particular, they 
showed that 
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for m = 0, l,..., where h,( ) is the m th Hermite polynomial (see Rainville, 1960) and H( ) is the inverse 
of the standard normal distribution function. 

Using the complete sample result (2.11), we have 

Thus: 
(i) For 0 <x, y G S < 1 and 6 -CL < 1, we have 4(x, z) = $(y, z) = (1 -z) SO 

(2.12) 

(2.13) 

where K, 6 is defined in (1.6). The last equality is justified by the fact that c,(x, y) is also the pointwise 

limit of its expansion (see Verrill, 1981, Appendix E). 
(ii) For 0 <y d 6 < 1, S <x < 1 and 0 <z < S, we have 4(x, z) = -z = $(a, z) so 

(iii) For 0 <X Q 6 < 1, 6 <y < 1, 

(iv) For S < x, y < 1, 

(2.16) 
m=l 

In view of the comment above (2.10) and results (2.13)-(2.16), we approximate c~,~,~ by 

(2.17) 

where gm( ) is defined by (2.1) and Mn-+cn asn-+oo. 

Similarly, we approximate dk,n,d by 

diL.6 =~(gl(~)+K,,*)(gl(~)+K,,~) (2.18) 

and ekln.s by 

ek;n,6 SK,+, =l(~gl(~)+Ke.8-Kl.8(h(~)+K~,~)) 

.(~R2(~)+K=.b_Kl.~(gl(~)+K~,~)) (2.19) 

respectively, where gi( ), g2( ) are defined by (2.1) and K1,&, K3,&, K,,,, and K,,, are defined in (1.6). 
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A straightforward but tedious examination of several cases (see Verrill, 1981, Lemmas 3.6-3.8) 
establishes 

n+1 n+l 

c c Mh.S - Ckln.d2/(~ + ‘)2n~mo~ 
k=l I=1 

n+l d-1 

n+l n+l 

c c &%,6 - ekd2/b + qy. 
k=l I=1 

The asymptotic distribution of T,$. From the definitions (2.8) and (2.17)-(2.19), we have 

(2.20) 

(2.21) 

Now the properties of the Hermite polynomials and the normal inverse H( ) imply that the g,( )‘s are 
well behaved. We state this result in the form of a lemma (cf. Verrill, 1981, Appendix G). 

Lemma 1. For any fixed 1, m E { 1, 2,. . . }, 

By equation (2.21) Lemma 1, and Corollary 6 of Verrill and Johnson (1988b), we have 

D 
T,16 - E(T,T,) --* r,. (2.22) 
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Proof of Theorem 1 (continued). Given (2.7) and (2.22) it is clear that the theorem will be established if 

A, = E([T,Ts - E(T,%) - Tn.6 + E(T,J)]~)~~~O. (2.23) 

To establish (2.23) let 

- (d&d - dkln.6) - b?h,8 - ekln,6) 

akln = 

Ck*ln,S - Ckln.6 

n+l 
(2.24) 

By the definitions of T,,, and T,$, we have 

A, = E( [T,Ts - E(T,Ts) - T,,, + E(Tn.6)12) 

= E([rnrs - T7;812) - -wT,Ts - Tn.6) 

=E i< y<akjnzkzl]2j - ( i<akkn)2 

n+l n+1 n+l 

= kFla:kn(h - 3, + 2 c c a,2h 
k=l I=1 

where p4 = E(Zz). By the limits (2.20) and the generalized Minkowski inequality, 

n+l n+l 

Results (2.25) and (2.26) yield (2.23) which completes the proof. 0 
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