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Abstract

We make use of Cram�er conditions together with the well-known local quadratic convergence of
Newton's method to establish the asymptotic closeness of k-step Newton estimators to eÆcient
likelihood estimators. In Verrill and Johnson (2006), we use this result to establish that estimators
based on Newton steps from

p
n-consistent estimators may be used in place of eÆcient solutions of

the likelihood equations in likelihood ratio, Wald, and Rao tests. Taking a quadratic mean di�eren-
tiability approach rather than our Cram�er condition approach, Lehmann and Romano (2005) have
outlined proofs of similar results. However, their Newton step estimator results actually rely on
unstated assumptions about Cram�er conditions. Here we make our Cram�er condition assumptions
and their use explicit.
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1 Introduction

Lehmann (1983) (Theorems 3.1 and 4.2 of Chapter 6) demonstrates that eÆcient likelihood esti-
mators, �̂n, in

p
n(�̂n � �0)

D! N(0; I(�0)
�1)

can be replaced by Newton one-step estimators, �n;Newt, that are generated from
p
n-consistent1

estimators, �n;c, via

�n;Newt � �
�
@2 lnL

@�l@�m

��1
s�s

j�n;c

0
B@

@ lnL=@�1
...

@ lnL=@�s

1
CA j�n;c + �n;c

where � = (�l; : : : ; �s)
T and L is the likelihood.

In this paper we establish that under Lehmann's versions of the Cram�er conditions, we have

�̂n � �n;Newt = Op(n
�1) (1)

An immediate corollary of our approach is that if �n;k;Newt denotes the result from the kth Newton

step from a
p
n-consistent initial estimate then

�̂n � �n;k;Newt = Op(n
�(2k�1))

In Verrill and Johnson (2006) we have used result (1) to establish that estimators based on
Newton steps from

p
n-consistent estimators may be used in place of eÆcient solutions of the likeli-

hood equations in likelihood ratio, Wald, and Rao tests. Taking a quadratic mean di�erentiability
approach rather than our Cram�er condition approach, Lehmann and Romano (2005) outline proofs
of results closely related to those of Verrill and Johnson (2006). However, their Newton step esti-
mator results actually rely on unstated assumptions about Cram�er conditions. Here we make our
Cram�er condition assumptions and their use explicit.

Under regularity conditions, Janssen et al (1985) demonstrate in the one-dimensional case that

�̂n � T (1)
n = Op(n

�1)

where T
(1)
n � �n;Newt, and

�̂n � T (2)
n = Op(n

�3=2)

where

T (2)
n � �

�
@2 lnL

@�2
j�
n;Newt

��1
@ lnL

@�
j�
n;Newt

+ �n;Newt

That is, T
(2)
n is approximately equal to the result of a second Newton step.

Janssen et al's conditions are related to Lehmann's (1983) version of the Cram�er conditions.
However, neither set is strictly weaker than the other.

1
â is a

p
n-consistent estimator of a if

p
n(â� a) = Op(1)
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2 Lehmann's (1983) versions of the Cram�er conditions

Let the parameter space be denoted by � � Rs. Let �0 2 � denote the true parameter value.

(A0) The distributions P (�) of the observations are distinct. That is, distinct �'s cannot corre-
spond to the same distribution.

(A1) The distributions P (�) have common support.

(A2) The observations are X = (X1 : : : Xn)
T where the Xi are iid with probability density f(x;�).

(The Xi may be vector valued.)

(A) There exists an open subset T of � that contains the true parameter value �0 such that for
almost all x, the density f(x;�) has continuous third derivatives, @3f(x;�)=@�l@�m@�p for all
� 2 T .

(B) For all � in T , the �rst and second logarithmic derivatives of f satisfy the equations

E�(@ ln f(X;�)=@�l) = 0

for l = 1; : : : ; s and

Ilm(�) � E�(@ ln f(X;�)=@�l � @ ln f(X;�)=@�m) = E�(�@2 ln f(X;�)=@�l@�m)

for l;m = 1; : : : ; s. The Ilm(�) are �nite.

(C) I(�) � [Ilm]s�s is positive de�nite for all � in T .

(D) For all l;m; p, @3 ln f(x;�)=@�l@�m@�p is a continuous function of � for � 2 T . Further, there
exist integrable functions Mlmp(x) such that��@3 ln f(x;�)=@�l@�m@�p�� �Mlmp(x)

for all � 2 T , and

mlmp � E�0(Mlmp(X)) <1

for all l;m; p.

Given conditions (A0) through (D), Lehmann establishes (Theorem 4.1 of his Chapter 6) that
there exists a consistent solution of the likelihood equations, �̂n, that satis�es

p
n(�̂n � �0)

D! N(0; I(�0)
�1) (2)

3 The Theorem

Assume that conditions (A0) through (D) hold. Let �n;c be a
p
n-consistent estimator of �0. That

is, assume that

p
n(�n;c � �0) = Op(1) (3)
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Then with probability approaching one as n!1, the Newton estimator,

�n;Newt � �
�
@2 lnL

@�l@�m

��1
s�s

j�n;c

0
B@

@ lnL=@�1
...

@ lnL=@�s

1
CA j�n;c + �n;c (4)

is well-de�ned (that is the partials exist and the matrix is invertible), and

�n;Newt � �̂n = Op(n
�1) (5)

where �̂n is a consistent solution of the likelihood equations guaranteed by Lehmann's theorem.
Proof

We will be making use of the fact that the Newton method yields quadratic convergence. In
particular, we will verify the conditions of Theorem 5.2.1 in Dennis and Schnabel (1983).

By assumption (D) we can de�ne

Jn(�) � �
��

@2 lnL

@�l@�m

�
s�s

j�
�
=n

We have

Jn(�̂n)� Jn(�0) = �
"

nX
i=1

�
@2 ln f(Xi;�)

@�l@�m
j
�̂n
� @2 ln f(Xi;�)

@�l@�m
j�0
�
=n

#
s�s

and, making use of assumption (D), by Taylor's theorem

@2 ln f(Xi;�)

@�l@�m
j
�̂n
� @2 lnf(Xi;�)

@�l@�m
j�0 =

�
@3 ln f(Xi;�)

@�l@�m@�1
; : : : ;

@3 ln f(Xi;�)

@�l@�m@�s

�
j��lm;n

(�̂n � �0)

where ��lm;n lies on the line segment between �̂n and �0.

Thus, by assumption (D), for �̂n 2 T (an open neighborhood of �0), the absolute value of the
lmth element of Jn(�̂n)� Jn(�0) is bounded by

nX
i=1

sX
p=1

Mlmp(Xi)
����̂pn � �p0

��� =n (6)

Since (by assumptions (A2) and (D) and the strong law of large numbers)

nX
i=1

Mlmp(Xi)=nj
a:s:! mlmp <1

for l;m; p 2 f1; : : : ; sg, results 2 and 6 imply that

jjJn(�̂n)� Jn(�0)jjF p! 0 (7)

where jjM jjF denotes the Frobenius norm of the matrix M .
Now by assumptions (A2) and (B) and the strong law of large numbers, we know that

Jn(�0)
a:s:! I(�0) (8)
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Results 7 and 8 imply that

jjJn(�̂n)� I(�0)jjF p! 0 (9)

By assumption (C), I(�0) is positive de�nite. Since the inverse and norm of a matrix are
continuous functions of the elements of the matrix, this implies that given any Æ > 0, we can �nd
an NÆ;1 such that n > NÆ;1 implies that

Prob
�
jjJn(�̂n)�1jjF < 2jjI(�0)�1jjF

�
> 1� Æ (10)

Since (see, for example, Theorem 3.1.3 of Dennis and Schnabel (1983))

jjMs�sjjF =
p
s � jjMs�sjj2 � jjMs�sjjF

where jjM jj2 denotes the l2 induced matrix norm ofM (see, for example, pages 43 and 44 of Dennis
and Schnabel), result 10 implies that for n > NÆ;1

Prob
�
jjJn(�̂n)�1jjF < 2

p
sjjI(�0)�1jj2

�
> 1� Æ

or

Prob
�
jjJn(�̂n)�1jjF < �

�
> 1� Æ (11)

where � � 2
p
s=� and � is the smallest eigenvalue of I(�0).

Let r > 0 be such that D(�0; 2r) � T , the open neighborhood of �0 in assumptions (A) through

(D). (Here, D(�0; 2r) denotes the open ball of radius 2r centered at �0.) Since (result 2) �̂n
p! �0,

given any Æ > 0, we can �nd an NÆ;2 such that n > NÆ;2 implies that Prob(�̂n 2 D(�0; r)) > 1� Æ.
Now, provided that �1;�2 2 D(�0; 2r),

jjJn(�1)� Jn(�2)jjF = jj[alm]s�sjjF
where

alm �
nX

i=1

�
@2 lnf(Xi;�)

@�l@�m
j�1 �

@2 ln f(Xi;�)

@�l@�m
j�2
�
=n

=

nX
i=1

�
@3 lnf(Xi;�)

@�l@�m@�1
; : : : ;

@3 ln f(Xi;�)

@�l@�m@�s

�
j��lm;n

(�1 � �2)=n

where ��lm;n lies on the line segment between �1 and �2.

Thus, by assumption (D), if �1, �2 are within r of �̂n, then for n > NÆ;2, with probability
greater than 1� Æ, we have

jjJn(�1)� Jn(�2)jj2F =
sX

l=1

sX
m=1

a2lm �
 

sX
l=1

sX
m=1

jalmj
!2

(12)

�
0
@ sX

l=1

sX
m=1

nX
i=1

sX
p=1

(Mlmp(Xi)=n) j�p1 � �p2j
1
A

2
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Since (by assumption (D))

nX
i=1

Mlmp(Xi)=n
a:s:! mlmp <1

for l;m; p 2 f1; : : : ; sg, result 12 implies that given any Æ > 0, we can �nd an NÆ;3 such that

n > NÆ;3 implies that, if �1, �2 are within r of �̂n, then with probability greater than 1� Æ,

jjJn(�1)� Jn(�2)jj2F �
0
@ sX

l=1

sX
m=1

sX
p=1

(mlmp + 1)j�p1 � �p2j
1
A

2

� 2jj�1 � �2jj2

where

 �
0
@ sX

l=1

sX
m=1

sX
p=1

(mlmp + 1)

1
A <1

That is, for n > NÆ;3, with probability greater than 1� Æ,

Jn 2 Lip(D(�̂n; r)) (13)

Results 11 and 13 permit us to invoke Dennis and Schnabel's (1983) Theorem 5.2.1 to conclude
that given any Æ > 0, we can �nd an NÆ;4 such that n > NÆ;4 implies that with probability greater
than 1� Æ

�n;Newt � �
�
@2 lnL

@�l@�m

��1
j�n;c

0
B@

@ lnL=@�1
...

@ lnL=@�s

1
CA j�n;c + �n;c

is well-de�ned (that is the partials exist and the matrix is invertible), and

jj�n;Newt � �̂njj � � �  � jj�n;c � �̂njj2 (14)

provided that

jj�n;c � �̂njj < � � min(r;
1

2�
)

But by result 2 and the fact that �n;c is a
p
n-consistent estimator of �0, we have

p
n(�n;c� �̂n) =

Op(1) so given any Æ > 0 we can �nd a KÆ and an NÆ;5 such that n > NÆ;5 implies

Prob(
p
njj�n;c � �̂njj � KÆ) � 1� Æ (15)

If we require that NÆ;5 > K2
Æ =�

2, then n > NÆ;5 also implies

Prob(jj�n;c � �̂njj < �) � 1� Æ (16)
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Results 14, 15, and 16 imply that given any Æ > 0, we can �nd an N such that n > N implies
that with probability greater than 1� Æ,

jj�n;Newt � �̂njj � � �  �K2
Æ =n (17)

which completes the proof of the theorem. �
Corollary

Assume that conditions (A0) through (D) hold. Let �n;c be a
p
n-consistent estimator of �0.

That is, assume that

p
n(�n;c � �0) = Op(1) (18)

De�ne �n;0;Newt � �n;c. Then with probability approaching one as n ! 1, the kth Newton
estimator,

�n;k;Newt � �
�
@2 lnL

@�l@�m

��1
s�s

j�
n;k�1;Newt

0
B@

@ lnL=@�1
...

@ lnL=@�s

1
CA j�

n;k�1;Newt
+ �n;k�1;Newt (19)

is well-de�ned (that is the partials exist and the matrix is invertible), and

�n;k;Newt � �̂n = Op(n
�(2k�1)) (20)

where �̂n is a consistent solution of the likelihood equations guaranteed by Lehmann's theorem.
Proof

The proof is essentially the same as that of the main theorem. We simply replace �n;c with
�n;k�1;Newt and �n;Newt with �n;k;Newt. Result 17 then becomes

jj�n;k;Newt � �̂njj � � �  �K2
Æ =(n

2k�2 � n2
k�2

) = � �  �K2
Æ =n

2k�1

�
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