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Abstract

This paper compares the so-called exact approach for obtain-
ing confidence intervals on normal distribution coefficients
of variation to approximate methods. Approximate ap-
proaches were found to perform less well than the exact
approach for large coefficients of variation and small sample
sizes. Web-based computer programs are described for
calculating confidence intervals on coefficients of variation
for normally and lognormally distributed data.
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Confidence Bounds for Normal and Lognormal
Distribution Coefficients of Variation

Steve Verrill, Mathematical Statistician
Forest Products Laboratory, Madison, Wisconsin

1 INTRODUCTION

The coefficent of variation (COV) of a distribution with mean p and variance o2 is defined as
the noise to signal ratio or o/u. (Sometimes this ratio is multiplied by 100 and reported as a
percentage.) Building materials are often evaluated not only on the basis of mean strength but
also on relative variability. Laboratory techniques are often compared on the basis of their COVs.
Thus, scientists and engineers are interested in obtaining confidence intervals on population COVs.

We have developed easily accessible Web software that calculates confidence intervals on COVs
for normal or lognormal distributions. A researcher who is interested in using this software, but
who is not interested in the statistical theory, can skip to section 5.

Vangel (1996) discussed approximate methods for obtaining confidence intervals on COVs given
normal data. He observed that the “exact” approach of Johnson and Welch (1940) is “computa-
tionally cumbersome.” He also noted that the approximate methods are only appropriate for
smaller COVs, and that McKay (1932) recommended that the approximations be used only for
COV < 0.33.

In this paper, we review the exact approach that is appropriate for normally distributed data
and describe Web resources that greatly ease any computational difficulties. We also demonstrate
that there are cases in which COV < 0.33 and approximate approaches do not perform as well as
the exact approach.

The appropriate technique for obtaining a confidence interval on the COV given lognormal data
is comparatively straightforward. The statistical theory is described in Appendix I.

2 THE “EXACT” APPROACH

The “exact” approach to COV confidence intervals was outlined in Johnson and Welch (1940).
Assume that we have a random sample of size n from a normal distribution with mean p and
variance o2. Then we have

X/(S/v/n) ~ Fyor(n —1,uy/njo)

where Fyor(n — 1, uy/n/o) denotes a noncentral T' distribution with n — 1 degrees of freedom and
noncentrality parameter /n/o, and X and S are the usual sample mean and standard deviation.
Thus,

Prob(A)=1-« (1)

where A denotes the event
{Fyer(n —1,v/n/COV) Ha/2) < X/(S/v/n) < Fyer(n —1,4/n/COV) (1 - a/2)}

and
COV =o/pu



Suppose that COV is positive. If X is positive, define COV, to be the solution to the nonlinear
equation in [3:

a/2=Fycr(n—1,v/n/B)(X/(S/vn)) (2)

If X is positive, define COVy to be the solution, if it exists, to the nonlinear equation in 3

1 —a/2=Fycr(n—1,vn/B)(X/(S/vn)) (3)

If there is no solution to this equation, then set COVy = oo. If X is negative, work with —S/X to
obtain a confidence interval on —COV and then negate that confidence interval.
Now, for COV > 0, we claim that

{X >0}nA={COV, <COV < COVy} (4)

This is an immediate consequence of the fact that, for fixed x and fixed degrees of freedom k,
Fner(k,v)(x) is a decreasing function of . For example, if the event on the left side of Equation
(4) has occurred, then we have

o/2 < Fyer(n — 1,V /COV)(X/(S/v/n)
and by the definition of COVy, we also have

a/2 = Fycr(n —1,v/n/COVL)(X/(S/Vn)
Thus, since Fycor(n — 1,7)(X/(S/\/n) is a decreasing function of v, we must have

Vi /COV < /n/COV,

or

COVy < COV
From Equation (1) we have
1 — a = Prob(A4) > Prob({X > 0} N A)
> Prob(A) — Prob(X < 0) =1 — a — Prob(X < 0)
or (from Equation (4))
1 — a > Prob({COV, < COV < COVy}) > 1 — a— Prob(X <0) (5)

Thus, COVy, and COVy almost yield an exact 1 — a confidence interval on COV. The dis-
crepancy in the “exactness” is bounded by Prob(X < 0). We discuss this discrepancy in the next
section.

Note that by Equations (2) and (3), to obtain COVy, and COVy we need a routine to calculate
the noncentral T' cumulative distribution function and a nonlinear equation solver. Presumably,
this approach has been considered to be computationally cumbersome because of the need for these
two routines. In section 5 we discuss an easy-to-use Web-based program that calculates COVy, and
COVy, and runs the cumbersome routines behind the scenes on the Web server.

3 PROBLEMS WITH THE “EXACT” APPROACH

Neglecting any computational difficulties, there are two relatively mild problems with the exact
approach. First, from Equation (5) we see that because X can be negative even when p is positive,
the “exact” confidence interval is in fact very slightly nonconservative. However, for practical
purposes we can ignore this problem because, in general, Prob(X < 0) is negligible. We illustrate
this in Table 1 with some relevant values for Prob(X < 0) = ®(—,/n/COV) where ® is the N(0,1)
cumulative distribution function.



Table 1. Prob(X < 0)

n
COov 3 Y 7

0.50 0.27E-03 0.39E-05 0.61E-07
0.40 0.75E-05 0.11E-07 0.19E-10
0.30  0.39E-08 0.45E-13 0.58E-18

Our second concern derives from the fact that if

L= a/2 > Fr(n—1)(X/(S/v/n)) (6)

where Fr(n — 1) denotes the cumulative distribution function of a central 7' distribution with n — 1
degrees of freedom, then Equation (3) would have no positive solution. Regardless of how large
COV became, we would still have

1 —a/2> Fycr(n—1,v/n/COV)(X/(S/vn))

In this case, the upper bound of the COV confidence interval would be oco.

We consider this to be a relatively mild problem for three reasons. First, as noted by Lehmann
(1986, page 352), the upper bound given by solving Equation (3) for £ is uniformly most accurate
invariant under scale transformations. (For the non-statistician, this simply means that the ap-
proach is theoretically optimal.) Second, since a standard confidence interval for p in this case has
lower bound

X = (S/Vm)Fr(n - 1)7'(1 - a/2)

inequality (6) implies that the confidence interval for p includes 0. Thus, it is reasonable for a
confidence interval for o/u to include co. Third, as we shall see in the next section, this problem
is even more pronounced for the approximate intervals.

4 PROBLEMS WITH APPROXIMATE CONFIDENCE INTER-
VALS

Vangel (1996) discusses four approximate confidence intervals for a COV. He focuses on two of
them given by (for a 1 — « confidence interval)

1—1/2 - —1/2
AIZ{KK@_QKuL k][ ) ] }
n n—1] L\ n n—1

1—1/2 - -1/2
A4:{K[<UI+2—1>K2+ Uy ,K<u2+2—1>K2+ u2] }

n n—1] n

and

where K = S/X, uy = Fy2(n—1) (1 — a/2), uy = F2(n—1) *(«/2), and F,2(n — 1) denotes the
cumulative distribution function of a central chi-squared distribution with n —1 degrees of freedom.
Ay is based on McKay’s (1932) approximation to the distribution of the COV, and A4 is based on
Vangel’s modification to this approximation.

Now we saw in section 2 that the exact confidence interval will have an infinite upper bound
when

S/X >+/n/Fr(n—-1)"'(1-a/2) =B,



Some straightforward algebra demonstrates that the upper A; bound will have to be set to oo if

S/XZ\/H\/(n—l)Q? =B

n—us)

and the upper A4 bound will have to be set to oo if

S/Xz\/ﬁ\/(n_l)(w =B,

n—us—2)

Clearly, B; < By4. Also, using the asymptotic normality of a Chi-squared statistic, one can show
that for larger n, By < B,. For smaller n we simply calculate the Bs and find that B; < By < Be.
Thus whenever the upper confidence bound for the exact interval is infinite, the upper bounds for
A1 and A4 are also infinite. Further there will be occasions in which the exact upper bound is
finite but the approximate upper bounds are infinite. The probability of this occurring for the Ay
interval is

P, = Prob(By < S/X < B,) = Prob(v/n/By > X /(S/v/n) > /n/Be)
For the A; interval this probability is
P, = Prob(B; < S§/X < B,) = Prob(v/n/By > X/(S/v/n) > /n/B,)

Since X/(S/y/n) has a noncentral T distribution with n — 1 degrees of freedom and noncen-
trality parameter /n/COV, we can calculate these probabilities with the aid of a noncentral T
distribution routine. We present values of these probabilities in Table 2 for n = 3,5,7,9,11,
COV =0.5,0.4,0.3,0.2, and « = 0.10,0.05,0.01. Clearly the problem of infinite upper bounds is
more severe for the approximate intervals than for the exact interval.



Table 2. Probability that the exact confidence interval upper bound is finite and the
approximate confidence interval upper bound is infinite

90% CI 95% CI 99% CI

COov n P4 P1 P4 P1 P4 P1

0.50 3 0.224 0.513 0.190 0.367 0.058 0.100
0.50 5 0.214 0.487 0.352 0.603 0.359 0.465
0.50 7 0.087 0.253 0.212 0431 0.497 0.669
0.50 9 0.028 0.103 0.092 0.231 0.387 0.581
0.50 11 0.008 0.036 0.034 0.104 0.233 0.402
0.40 3 0.211 0.562 0.225 0.466 0.084 0.146
0.40 5 0.083 0.297 0.217 0487 0.426 0.598
0.40 7 0.013 0.074 0.068 0.193 0.339 0.561
0.40 9 0.001 0.013 0.010 0.061 0.141 0.303
0.40 11 0.000 0.002 0.001 0.010 0.043 0.121
0.30 3 0.133 0.518 0.232 0.561 0.131 0.234
0.30 5 0.007 0.080 0.060 0.224 0.347 0.605
0.30 7 0.000 0.003 0.002 0.023 0.082 0.238
0.30 9 0.000 0.000 0.000 0.001 0.008 0.042
0.30 11 0.000 0.000 0.000 0.000 0.000 0.004
0.20 3 0.019 0.272 0.121 0.502 0.214 0.411
0.20 5 0.000 0.001 0.000 0.015 0.065 0.257
0.20 7 0.000 0.000 0.000 0.000 0.000 0.008
0.20 9 0.000 0.000 0.000 0.000 0.000 0.000
0.20 11 0.000 0.000 0.000 0.000 0.000 0.000

A second problem with the approximate confidence intervals relative to the exact intervals
concerns their lengths and configurations. Simulations show that even for COVs as large as 0.5
and n as small as 3, the coverages of the approximate intervals are satisfactory. (See Tables 7 to
9 in Appendix II.) However, for larger COVs and smaller n’s, the lengths and configurations of
the approximate intervals are inferior to those of the exact intervals. In particular, we performed
simulations (4,000 trials per COV, sample size combination) that indicate that even if we restrict
our attention to situations in which both the approximate and exact intervals have finite upper
bounds, then four reasonable measures of confidence interval (CI) performance are superior for the
exact intervals.

The simulation estimates of the expected value of

(exact CI interval length)/(approximate CI interval length)

are presented in Table 3 for n = 3,5,7,9,11, COV = 0.5,0.4,0.3,0.2, and « = 0.10,0.05,0.01.
The simulation estimates of the expected value of

(max. distance of an exact CI point from the true COV)/

(max. distance of an approximate CI point from the true COV)

are presented in Table 4.
The simulation estimates of the probability that the exact confidence interval is shorter than
an approximate interval are presented in Table 5.



The simulation estimates of the probability that the maximum distance between the true COV
and a point in the confidence interval is shorter for the exact interval than for an approximate
interval are presented in Table 6.

The program that was used to perform the simulations is available on the Web at

http://wwwl.fpl.fs.fed.us/cov.sim.html

Table 3. Ratios of the exact confidence interval length to the approximate confidence
interval lengths'

Confidence 3 5 7 9 11

Level COVv A4 A1 A4 A1 A4 A1 A4 A1 A4 A1

0.500 0.910 0.720 0.856 0.685 0.875 0.717 0.902 0.761 0.920 0.805
0.90 0.400 0.923 0.719 0.910 0.735 0.940 0.799 0.960 0.856 0.969 0.894
0.300 0.943 0.730 0.963 0.801 0.982 0.893 0.988 0.934 0.991 0.952
0.200 0.980 0.780 0.995 0.921 0.997 0.963 0.998 0.976 0.998 0.982

0.500 0.901 0.713 0.820 0.666 0.828 0.680 0.852 0.724 0.880 0.755
0.95 0.400 0.898 0.725 0.864 0.699 0.899 0.750 0.929 0.809 0.950 0.858
0.300 0.917 0.713 0.921 0.757 0.963 0.849 0.980 0.912 0.986 0.940
0.200 0.944 0.744 0.985 0.880 0.994 0.950 0.996 0.970 0.997 0.979

0.500 0.876 0.730 0.768 0.645 0.751 0.635 0.758 0.657 0.771 0.666
0.99 0.400 0.883 0.733 0.807 0.679 0.799 0.671 0.832 0.712 0.870 0.763
0.300 0.896 0.722 0.826 0.683 0.878 0.740 0.934 0.827 0.961 0.890
0.200 0.884 0.714 0.916 0.759 0.976 0.888 0.989 0.947 0.993 0.967

Table 4. Ratios of the maximum distance between the true COV and a point in the
exact confidence interval and the maximum distances for the approximate confidence
intervals'

Confidence 3 5 7 9 11

Level COVv A4 A1 A4 A1 A4 A1 A4 A1 A4 A1

0.500 0.902 0.725 0.841 0.655 0.864 0.687 0.894 0.740 0.914 0.787
0.90 0.400 0.918 0.695 0.903 0.705 0.936 0.778 0.957 0.842 0.967 0.883
0.300 0.941 0.697 0.961 0.782 0.981 0.881 0.987 0.927 0.990 0.946
0.200 0.980 0.757 0.994 0.913 0.997 0.958 0.998 0.973 0.998 0.980

0.500 0.890 0.722 0.797 0.629 0.807 0.639 0.836 0.690 0.867 0.726
0.95 0.400 0.890 0.701 0.851 0.661 0.889 0.719 0.922 0.786 0.945 0.839
0.300 0.913 0.676 0.916 0.729 0.960 0.832 0.977 0.900 0.984 0.930
0.200 0.942 0.715 0.985 0.867 0.994 0.942 0.996 0.965 0.997 0.975

0.500 0.861 0.743 0.734 0.600 0.716 0.581 0.725 0.603 0.741 0.616
0.99 0.400 0.873 0.709 0.783 0.625 0.776 0.623 0.813 0.672 0.855 0.729
0.300 0.889 0.679 0.813 0.642 0.867 0.709 0.927 0.804 0.956 0.872
0.200 0.880 0.678 0.912 0.736 0.974 0.875 0.988 0.937 0.992 0.960

14,000 trials per COV, n combination



Table 5. Empirical probability that the exact confidence interval is shorter than the
approximate interval given that both intervals are finite?

n
Confidence 3 ) 7 9 11
Level COoVv A4 A1 A4 A1 A4 A1 A4 A1 A4 A1
0.50 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.90 0.40 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.30 0.58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.20 037 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.95 0.40 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.30 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.20 0.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.99 0.40 086 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.30 086 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.20 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6. Empirical probability that the maximum distance between the true COV
and a point in the confidence interval is shorter for the exact than for the
approximate interval given that both intervals are finite?

n
Confidence 3 ) 7 9 11
Level COoVv A4 A1 A4 A1 A4 A1 A4 A1 A4 A1
0.50 086 0.52 1.00 0.72 1.00 0.77 1.00 0.76 1.00 0.77
0.90 040 0.77 0.62 1.00 0.77 1.00 0.78 1.00 0.76 1.00 0.75
0.30 0.62 0.73 099 0.81 1.00 0.78 1.00 0.74 1.00 0.72
0.20 037 0.81 095 080 099 0.75 1.00 0.72 1.00 0.69
0.50 0.79 0.52 1.00 0.74 1.00 0.81 1.00 0.81 1.00 0.83
0.95 0.40 0.7 0.60 0.99 0.79 1.00 0.83 1.00 0.83 1.00 0.82
0.30 0.74 0.73 098 086 1.00 084 1.00 0.81 1.00 0.79
0.20 0.64 0.84 0.92 087 097 0.82 099 0.79 1.00 0.77
0.50 0.76 0.50 0.95 0.74 1.00 0.84 1.00 0.88 1.00 0.91
0.99 0.40 081 0.60 092 082 1.00 090 1.00 091 1.00 0.91
0.30 086 0.74 094 091 098 0.93 1.00 093 1.00 0.91
0.20 087 0.87 096 095 093 093 094 091 098 0.89

24,000 trials per COV, n combination



It is clear from these tables that for larger COVs and smaller n’s, the exact intervals outperform
the approximate intervals on all four of these measures. This holds true even for COVs below
McKay’s 0.33 cutoff. The disparity in performance is accentuated for the 0.99 level confidence
intervals.

High COVs are seldom seen in scientific measurements or in the properties of man-made mate-
rials, but they are not uncommon in the properties of naturally occurring materials. For example,
the COVs of various wood strength properties can exceed 0.30 (see Table 4-6 of The Wood Handbook
(1999)).

5 COMPUTATIONAL RESOURCES

A Web-based program that makes use of Equations (2) and (3) to obtain exact confidence intervals
on COVs for normal distributions can be run at

http://wwwl.fpl.fs.fed.us/covnorm.html

The Web form front end for for this program is displayed in Figure 1. To use the program, type in
the desired confidence level, the sample size, and the sample mean and standard deviation of the
data. For example, suppose the data set consists of the five data points 9.68, 9.94, 10.82, 11.09,
and 10.05 (generated from a N(10,12) distribution), and you want a 95% confidence interval on
the corresponding COV. Enter the confidence level (95) in the first (top) box, the sample size (5)
in the second box, the sample mean (10.32) in the third box, and the sample standard deviation
(0.606) in the last box. (See Figure 1.) Then click the Execute the program button, and the
program will return a Web page that presents the calculated COV (.059) and the corresponding
confidence interval ([.035,.170]).

Note that the sample standard deviation should be calculated with a n — 1 denominator rather
than a n denominator where n is the sample size. Thus the appropriate formula for the sample
standard deviation is

n

s = \IZ((L‘Z —7)2/(n—1)
i=1

where z is the sample mean. Most calculators and spreadsheets will have an option to calculate s.

A Web-based program that obtains exact confidence intervals on COVs for lognormal distribu-
tions can be run at http://wwwl.fpl.fs.fed.us/covlin.html. To use this program, type in the
desired confidence level, the sample size, and the standard deviation of the natural logs of the data
values. For example, suppose the data set consists of the five data points 8.52, 8.43, 8.24, 9.00, and
10.72 (generated from a lognormal(2.3,.12) distribution), and you want a 95% confidence interval
on the corresponding COV. Type 95 in the first box, 5 in the second, and .106, the sample standard
deviation of the natural logs of the data, in the third. (See Figure 2.) Then click the Execute
the program button, and the program will return a Web page that presents the corresponding
confidence interval ([.064,.312]).

As in the normal case, the sample standard deviation (of the natural logs of the data) should be
calculated with a n — 1 denominator rather than a n denominator where n is the sample size. Most
calculators and spreadsheets will have an option to calculate this value (after you have calculated
the natural logs of the data values).

The public domain source code for complete FORTRAN and Java implementations of a program
to calculate exact COV confidence intervals for normal distributions can be found at

http://wwwl.fpl.fs.fed.us/covnorm.code.html



If users want to do their own programming, public domain noncentral T" distribution functions
and nonlinear equation solvers are readily available.

Public domain FORTRAN or C code to calculate the noncentral T distribution can be found in
the DCDFLIB library. DCDFLIB is a public domain library of “routines for cumulative distribution
functions, their inverses, and their parameters.” It was produced by Barry Brown, James Lovato,
and Kathy Russell of the Department of Biomathematics, M.D. Anderson Cancer Center, The
University of Texas. DCDFLIB can be found at

http://odin.mdacc.tmc.edu/biomath/anonftp/page 2.html

Public domain Java code to calculate the noncentral 7' distribution can be found at
http://wwwl.fpl.fs.fed.us/distributions.html

Public domain FORTRAN and C code to solve a nonlinear equation can be found at
http://gams.nist.gov/serv.cgi/Class/F1b/

Public domain Java code to solve a nonlinear equation can be found at

http://wwwl.fpl.fs.fed.us/optimization.html

6 CONCLUDING REMARKS

For normally distributed data, large coefficients of variation (COVs), and small sample sizes, “ex-

act” confidence intervals yield, on average, smaller lengths and smaller maximum distances from
the true COV than do Vangel’s (1996) approximate intervals. In addition, the upper bounds of the
approximate intervals are infinite more frequently than are the upper bounds of the exact intervals.

We have developed Web resources that make it simple to obtain exact confidence intervals for
COVs for both normally and lognormally distributed data.
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If you want to calculate confidence bounds on the coefficient of variation of a lognormal distribution, go here.

Here is FORTRAN and Java source code for standalone programs that vield the confidence intervals.

What is the desired confidence level for the interval?
(for example, 95 for 95% confidence)

|95

What is the sample size, u#?

s

What is the yample mean?

IlD.32

What is the sample standard deviation?
{The sum of squares divisor in the standard deviation calculation should be # - 1 rather than #.)

|.606

Execute the program | i

For questions or comments about this Web page, please contact Steve Verrill at sverrillefs. fed. us or 608-231-9375,

| |

St s A2 Gl 2|

[ == |Document; Done

Figure 1: The Web form for a confidence interval on the COV for normally distributed data
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E— Confidence bounds for a lognormal distribution coefficient of variation - Netscape

File Edit “iew Go Communicator Help

=

<« = 3 X a S & B @

Back Fomard  Reload Home Search MNetscape Print Security Shop o

W# Bookmarks A LDCﬂtiDnilhttp:wam folfs fed uscovin himl v| & what's Belated

J%Instantr\dessage W'elhdail Fadio Feaople r'allow Fages Download Calendar [__‘l' Channels

This page 15 a form for calculating confidence bounds on the coefficient of variation associated with a lognormal distribution.
Here is an explanation of the lognormal theory: postscript, pdf. If you want to calculate confidence bounds on the coefficient of
variation of a normal distribution, o here.

What is the desired confidence level for the interval?
(for example, 95 for 95% confidence)

|95

What is the sample size, u#7

B

What is the sample standard deviation of the natural logs of the data values?
(The sum of squares divisor in the standard deviation calculation should be # - 1 rather than #.)

|.106

Execute the program

For questions or comments about this Web page, please contact Steve Verrill at sverrillgfs. fed. us or 608-231-9375.

[Forest Zernce] [Forest Products Lab] [FPL Statistics Group]

Last modified on 10/9/02.

| |

St s A2 Gl 2|

As of last midnight, this page had been accessed times since May, 2002.

[ == |Document; Done

Figure 2: The Web form for a confidence interval on the COV for lognormally distributed data
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APPENDIX I — CONFIDENCE INTERVAL FOR THE COEFFI-
CIENT OF VARIATION OF A LOGNORMAL DISTRIBUTION

Assume that X has a lognormal(p, 0?) distribution. That is
In(X) ~ N(,0%)

We want a confidence interval on

COV = /Var(X)/E(X)

where Var(X) denotes the population variance of X and E(X) denotes the population expectation
of X. Straightfoward calculations yield

E(X) = exp(p + 0°/2)

and
Var(X) = exp(2u + 02)(exp(c?) — 1)

Thus
COV = <exp(u +0%/2)y/exp(0?) — 1> /exp(p + 0?/2)

=./exp(c?) — 1

Now let Xi,..., X, be a sample from the lognormal distribution. Then Y} = In(X3),...,Y, =
In(X,,) is a sample from a N(y,0?) distribution and we know that a 1 — « level confidence interval
for 02 is [ar, ay], where

ar, = (n — I)S?L/(Fxg (n—1)""(1 —a/2))
ay = (n — 1)52/(sz(n — 1)_1(a/2))

n

Sa=> (Yi=Y)?/(n—1)

i=1
and F,»(n —1)(z) denotes the cumulative distribution function of a central chi-squared distribution
with n — 1 degrees of freedom. Thus

Vexplar) — Ly fexplan) ~1]

is a 1 — « level confidence interval for COV.
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APPENDIX IT — SIMULATION COVERAGES OF CONFIDENCE
INTERVALS

Table 7. Simulation coverages of nominal 90% confidence intervals?

n

3 5 7 9
COV exact Ay A exact Ay A exact Ay A exact Ay A
0.50 0.903 0.906 0.890 0.901 0.907 0.896 0.900 0.906 0.900 0.902 0.909 0.900
0.40 0.899 0.901 0.893 0.901 0.904 0.897 0.897 0.901 0.897 0.904 0.907 0.903
0.30 0.899 0.899 0.896 0.907 0.907 0.903 0.899 0.900 0.897 0.904 0.905 0.901
0.20 0.903 0.903 0.901 0.904 0.904 0.903 0.894 0.895 0.895 0.897 0.897 0.896

Table 8. Simulation coverages of nominal 95% confidence intervals*

n

3 5 7 9
COV exact Ay A exact Ay A exact Ay A exact Ay A
0.50 0.950 0.952 0.942 0.949 0.956 0.944 0.950 0.955 0.949 0.948 0.952 0.949
0.40 0.947 0.950 0.943 0.951 0.951 0.950 0.950 0.952 0.950 0.950 0.951 0.950
0.30 0.947 0.948 0.946 0.949 0.949 0.949 0.950 0.950 0.948 0.952 0.952 0.950
0.20 0.956 0.956 0.955 0.953 0.954 0.953 0.950 0.950 0.948 0.950 0.950 0.948

Table 9. Simulation coverages of nominal 99% confidence intervals®

n

3 5 7 9
COV exact Ay A exact Ay A exact Ay A exact Ay A
0.50 0.990 0.992 0.989 0.992 0.994 0.991 0.990 0.992 0.992 0.988 0.989 0.988
0.40 0.990 0.991 0.988 0.991 0.992 0.990 0.990 0.993 0.990 0.992 0.992 0.991
0.30 0.990 0.990 0.988 0.990 0.990 0.989 0.990 0.990 0.989 0.991 0.991 0.990
0.20 0.993 0.993 0.992 0.989 0.989 0.989 0.990 0.990 0.991 0.988 0.988 0.988

34000 trials per COV, n combination. The half-width of an approximate 90% confidence interval on the coverage
is 1.96 x /.9 x .1/4000 = .0093.
44000 trials per COV, n combination. The half-width of an approximate 95% confidence interval on the coverage

is 1.96 x /.95 x .05/4000 = .0068.

54000 trials per COV, n combination. The half-width of an approximate 99% confidence interval on the coverage

is 1.96 x /.99 x .01/4000 = .0031.
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