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Predictor Sort Sampling, Tight t’ s, and the Analysis
of Covariance
Steve P. Verrill, Mathematical Statistician
David W. Green, Supervisory Research General Engineer

1  Introduction

In recent years wood strength researchers have begun to replace experimented unit allocation via
random sampling with allocation via sorts based on nondestructive measurements of strength
predictors such as modulus of elasticity and specific gravity. Warren and Madsen (1977) describe
the procedure as follows:

One can take steps, however, to ensure that the inherent strength distributions of test
and control samples are reasonably equivalent. Indeed, failure to do so can only throw
doubt on the results.

Specifically, then, all the boards in the experiment are ordered from weakest to strongest
as nearly as can be judged from their moduli of elasticity, knot size, and slope of grain.
To divide the material into J equivalent groups the first J boards, after ordering, are
taken and randomly allocated one to each group. This is repeated with the second,
third, fourth, etc., sets of J boards. The strength distributions of the resulting groups
should then be essentially the same.

Although this procedure is intuitively attractive, if the associated analysis does not take into
account the nonrandom nature of the sampling, the experiment can be less sensitive to treatment
effects. We illustrate the problem with a simple example:

Suppose that a wood scientist wishes to test whether the mean strength of lumber treated with
preservative A differs from the mean strength of lumber treated with preservative B. Assume that
the scientist has decided on samples of size k and has obtained 2k specimens from some source.
Then, to make the initial samples of lumber as similar as possible, the scientist measures a predictor
variable (this could be a linear combination of modulus of elasticity (MOE), specific gravity, . . . ),
orders the measurements

and labels the corresponding specimens

Next, for i = 1,..., k, the scientist randomly assigns one of {S2i_1, S2i} to treatment A and the
other specimen to treatment B. This procedure should lead to nearly identical initial predictor
distributions in the 2 samples. Believing that the predictor is well correlated with modulus of
rupture (MOR), the scientist hopes that the procedure will also lead to nearly identical initial
MOR distributions. In accord with current practice, the scientist then proceeds with the experiment
and analyzes the results as if the two initial samples were composed of independent, identically
distributed representatives of an initial strength distribution. Given this (incorrect) distributional
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assumption, an appropriate test for a postpreservative difference in mean strength would be a
pooled t test.

Contrary to the scientist’s intuition, this approach can actually decrease one’s ability to detect
a difference between the two preservatives. Why the decrease? Given the standard assumptions of
normality and independence, the test statistic

has a nulll t distribution with 2k – 2 degrees of freedom. However, when the sampling is via
a predictor sort, r is no longer distributed as a t. Instead the distribution depends upon the
correlation ρ ρ between the predictor variable and the response variable. As this correlation increases
to 1, the null distribution of ~ will “tighten” around 0. In Figure 1, we present a histogram2 of T
values for the predictor sort case in which k = 24 and ρ ρ = .70. Superimposed on the histogram is
the probability density function of a standard t distribution with 46 degrees of freedom. Clearly,
the t distribution overestimates the “width” of the true distribution.

Now an analyst who is ignoring the nonrandom nature of the sampling will use 2.013 (from
a standard t table) as the critical value for a test of the hypothesis that there is no difference
in the strength properties associated with treatments A and B. Let ∆ ∆ denote the true, unknown
difference between the mean strengths of the two types of wood, and let σ σ denote the true standard
deviation of the strength. For ∆ ∆ / σ σ sufficiently small, the narrowing of the ~ distribution will reduce
the chance of detecting an effect. On the other hand, for ∆ ∆ / σ σ sufficiently large, it will increase
the chance.3 This result is illustrated in Figure 2. There the dashed line4 represents the powers

associated with a predictor sort design followed by a standard (but incorrect) analysis using a 2.013
critical value. The solid line represents the power associated with a standard random sampling
design followed by a standard analysis.

If the correct critical values are used (we obtain these below), then the predictor sort procedure
yields a power curve that is uniformly better than the power curve obtained in the random sampling
case. For the k = 24, ρ ρ = .7 case, this curve is plotted as the dotted line in Figure 2. As we will
see below, this increased power can yield substantial sample size savings.

In the next section we obtain the asymptotic (large sample) distributions of the “pooled tight
t“ and the “paired tight t.”

In Section 3 we work through several examples of predictor sort/tight t design and analysis
procedures. We have written a public domain computer program that implements these procedures.

1The “null” distribution is the distribution of the test statistic under the “null hypothesis” — no difference
between treatments.

2The histogram was obtained via computer simulation and is based on 4,000 trials.
3The relative narrowness of the r distribution means that right tail values tend to be pulled down and left tail

values tend to be pulled up. Thus, roughly speaking, if A/(o@) is less than 2.013, T will be less likely to lie
above the critical value than a standard t statistic, while if A/(u@) is greater than 2.013, r will be more likely
to lie above the critical value than a standard t statistic.

4For the cases ∆ ∆ / σ σ = 0.0, 0.075, 0.150, 0.225, . . . . 1.5, 4000 samples of total size 48 were generated and then divided
into subsamples of size 24 via a predictor sort with ρ ρ = .7. The r statistics were then calculated, and the frequency
with which these statistics fell beyond the -2.013,2.013 bounds was noted. The resulting 21 estimated power values
were connected to yield the dashed line.

5The power of a statistical test is the probability (ranging from 0 to 1) that the test will reject the null hypothesis
of no difference, that it will “detect a difference.” As the actual difference increases or the sample size increases, the
power will increase. One can also increase power by using an improved statistical method. A predictor sort followed
by a tight t analysis constitutes one such method.
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The program is described by Verrill, Green, and Herian [in press] and may be obtained from the
authors. See Section 3 for details.

Readers who are primarily interested in the application of our methods should restrict their
attention to Section 3.

The work that forms the basis for the computer program is discussed in Sections 4–6 and
Appendix A. In Section 4 we present estimates of the small sample critical values of the tight t’ s
and identify the sample sizes needed to permit use of the asymptotic (large sample) critical values.
In Section 5 we present a power study that should be useful in selecting sample sizes, and we show
that we need not greatly concern ourselves about entering the critical value tables via estimates of
ρ ρ . We include in this power study an analysis of covariance approach and identify those cases in
which it is inferior to one of the tight t approaches. Finally, in Section 6 we warn against intuitively
attractive, but incorrect, power calculations.

2 Mathematical Basis of Our Approach

We record here a theorem that justifies our approach to designing “tight t“ experiments and
analyzing “tight t“ data. Its practical import is explored in the sections that follow. If you simply
want to know how to use the result, please skip ahead to the next section.

Theorem. Assume that the predictor variable and the variable of interest have a joint bivariate
normal distribution with correlation ρ ρ . Let the allocation of samples be as described in Section
1. (For a multiple factor case, enough adjacent experimental units would be chosen at a time to
provide one additional observation for each cell. ) Then, for – 1 < ρ ρ < 1, the asymptotic distribution
of the statistic that treats the groups of “equivalent” experimental units as a block (the “paired
approach”) is X2

J-1. The asymptotic distribution of the statistic that ignores the block structure
generated by these groups (the “pooled approach”) is (1 – ρ ρ 2)X2

J-1.

Proof. The proof appears in the Appendix.

Note: Let T denote the usual pooled t statistic. Then T/~~2 is the “pooled tight t“
statistic. The “paired tight t“ statistic has the same form as the usual paired statistic. By the

3 Applying Our Methods

reasoning used to prove the more general theorem just stated, one can show that given predictor
sort sampling, for – 1 < ρ ρ < 1, the pooled tight t and the paired tight t are asymptotically N(0,l).

3.1 Tables and a Computer Program

To apply our methods, one can take a “manual” approach and use Tables 1 - 56 provided in
Appendix B. In sections 3.2 and 3.3 we work through two examples.

Alternatively, one can use a computer program that we have written. This program performs
sample size calculations, specimen allocations, and data analyses. It can be run over the World
Wide Web — see http://www1.fpl.fs.fed.us/ttweb.html6.

6The program is in the public domain and can be obtained from the authors. Source code is available as are exe-
cutable versions for Sun Solaris 1.x, Sun Solaris 2.x, and DOS. A user can obtain the program and annotated input to
the program (Verrill, Green, and Herian [in press]) via the World Wide Web (http://www1.fpl.fs.fed.us/papers.html),
or via the U.S. Postal Service (USDA Forest Products Lab, 1 Gifford Pinchot Drive, Madison, WI 53705 — please
send us a floppy and specify the operating system). If you have questions about the program or encounter difficulties
in running it, please contact us at steve@ws13.fpl.fs.fed.us.
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3.2 Example 1 — A Simulated Experiment Using Our Methods

In this section we work through an example of a predictor sort/tight t experiment. 7

Suppose that a scientist wants to determine whether there is a difference in the effects of
preservatives A and B on MOR. In an effort “to reduce random variation between specimens in
the two groups,” the MOE values of all specimens will be determined prior to treatment. These
values will be ranked from high to low. Pairs of specimens with adjacent MOEs will be randomly
separated into the two treatment groups. Before any of this can be done, however, the scientist
must determine how many specimens will be needed.

3.2.1 Design — Sample Size Calculations

The scientist wants to choose a total sample size n = 2k sufficient to detect a 10% difference in
mean strength at a .05 significance level with a probability of at least .90. The scientist believes
that the coefficient of variation of MO R is approximately 20%, and the correlation ρ ρ between MOR
and MOE is .70. (Here we use MOE as the predictor, but other variables or linear combinations
of variables could be used.)

There are three approaches that one could take to calculating an appropriate sample size
— table, noncentral t, normal approximation. For lower ρ ρ , or for high ρ ρ and large sample size
combinations, the three approaches will yield essentially the same results. We give examples of all
three approaches because they differ in ease of implementation, and because the latter two methods
are suspect for high ρ ρ , small sample size combinations (see Section 5).

Power Tables

Table 49 contains power results for a correlation of .70. (A detailed description of the tables is
provided in the Index to the Tables that appears at the beginning of Appendix B.) The difference
A that we want to be able to detect is approximately .10 × µ where µ is the mean MOR of
the specimens. Also, since the coefficient of variation, σ σ / µ × 100, is approximately 20%, σ σ N
(is approximately) 0.20 × µ. Thus ∆ ∆ / σ σ x 0.5. Looking in the “Tight t /Unknown ρ ρ /Pooled/ ρρ
estimated” column in Table 49, we see that the power for a total sample size of 72 (72 = n = 2k)
and ∆ ∆ / σ σ = .5 is .84. For a total sample size of 96 and ∆ ∆ / σ σ = .5, the power is .92. Interpolating
between these two values we see that we would need about

total observations to assure ourselves of a .90 probability of detecting a 10% difference in mean
strength. (For ρ ρ = .70, ∆ ∆ / σ σ = .5, n = 90, a standard random sampling approach would only yield
a power of .55 + (.68 – .55)(90 – 72)/(96 – 72) x .65 — see Table 49.)

Noncentral t

As noted in Section 5, the noncentral t approach works best for ρ ρ < .80. As ρ ρ approaches 1, this
approach yields an overestimate of power and thus an underestimate of needed sample size.

7One can also take an analysis of covariance approach to this problem. As we will see in the power study, provided
that the relationship between the predictor and MOR is correctly modelled, an analysis of covariance approach will
also yield good power properties.
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For this example, the noncentrality parameter is

The power is then

where t γ γ is a noncentral t statistic with noncentrality parameter γ, γ, and t2k-2 (.025) is the one-sided
.025 critical value for a central t with 2k – 2 degrees of freedom. Our computer program performs
this calculation (as well as the other calculations associated with the design and analysis of a
predictor sort experiment) and yields n = 88.

Normal Approximation

As noted in Section 5, the normal approximation approach is even more susceptible to overesti-
mating power — underestimating sample size — than the noncentral t approach. However, this
does not appear to be a problem for lower ρ ρ and higher n (e.g., see Table 49), and to implement
the method we need only a table of the normal cumulative distribution function.

For the current example, we have

where s pooled is the pooled standard deviation, and N(0,l) denotes a standard normal distribution.
Thus, the approximate power is

We can neglect the first term in this sum, set the second term equal to
solve for k. For our example this yields

the desired power, and
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We see that, for this example, the three methods give similar results. For ρ ρ < .8 and n > 24 (say)
this is to be expected. (See the power tables.)

3.2.2 Design — Specimen Allocation

For the example, MOR, MOE pairs were generated from a bivariate normal distribution with mean
vector

and covariance matrix

where σ σ MOE = .2 ×  µ MOE and σ σ MOR = .2 × µ MOR. In Table 56, we list the 90 MOE,MOR pairs
as drawn, the 90 pairs ordered by MOE, and the division of the data into two sets of 45 pairs.
(In addition to performing sample size calculations, the computer program described above also
sorts predictor values and then randomly allocates adjacent experimental units to the two test
conditions. ) In Table 56, we also list “treated” MOR values. For treatment B, these are the same
as the untreated values. For treatment A, they have been reduced by 500 from the untreated
values.

3.2.3 Analysis

Given the values listed in Table 56, the estimate of ρ ρ is

The pooled estimate of the MOR standard deviation is

The pooled tight t statistic is

This value should be compared to a critical value appropriate to a pooled tight t statistic with
ρ ρ = .72, n = 2k = 90, and (two-sided) size equal to .05. This critical value can be obtained in
several ways. One approach is to note that n = 90 which, according to Table 17, is large enough that
we may use a standard normal distribution table to find the critical value. Thus we are justified in
comparing 2.99 with z (.05/2) = 1.96 and concluding that there is a significant difference between
the two treatments.
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Alternatively, when we cannot use large sample results, we can use Tables 1-10 (and Table 11)
to calculate the critical values for pooled (Tables 1–5) and paired (Tables 6-10) tight t statistics.
For example, if the correlation between predictor and response (e.g., MOE and MOR) were .70,
and one wanted to use the pooled tight t with total sample size equal to 90, and to do a test at a
5% significance level, then one would use the values in the .70 row of Table 3, and the equation

to obtain the critical value

For n = 90 and ρ ρ = .75, we have

An interpolation (which is even simpler than usual in this case) yields 1.99 as an appropriate
estimate of the critical value. Since 2.99 > 1.99, we can conclude that there is a significant
difference between the two treatments. (The computer program described above will also calculate
the t value, find the appropriate critical value, and report the appropriate conclusion. )

3.3 Example 2 — Estimating Power

Winandy and others (1992) proposed to investigate the effects of preservative treatments on se-
lected hardwoods and two types of laminated veneer lumber. Because they had limited supplies
of material, the authors were forced to restrict replication numbers to 16, 18, or 20, depending
upon the the particular treatment/drying condition/material combination in question. The authors
wanted to be able to detect 10% differences in MOR. They believed that a reasonable estimate
of the coefficient of variation for their material was .16, and that a reasonable estimate of the
correlation between MOE and MOR was .7. What kind of power could they expect?

3.3.1 Standard Random Sampling Pooled T

We have ∆ ∆ / σ σ = .10/.16 = .625. Interpolating (quadratically in ∆ ∆ / σ σ and then quadratically in n)
in the “Standard random sampling pooled t“ column of Table 49, one can see that approximate
values for the powers are the following:

Using our Fortran program (with ρ ρ set to 0), we obtain the following:
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Thus, if Winandy and others had performed standard random sampling and standard pooled
t analyses, they would have had less than a 50% chance of detecting 10% mean differences. (This
assumes that the authors wanted to compare individual “cells” in the desing. In the absence of
interactions it would generally be possible to combine data from separate cells to achieve increased
power.) There is a greater than 50% chance that they would have had to report no statistically
significant differences (at a .05 significance level) even if there really were 10% differences in pop-
ulation means.

3.3.2 Tight t Approach

We have ∆ ∆ / σ σ = .10/.16 = .625. Interpolating (quadratically in ∆ ∆ / σ σ and then quadratically in
n) in the “Tight t /Unknown ρ ρ /Pooled/ ρ ρ from experience” column of Table 49, one can see that
approximate values for the powers are the following:

Using the noncentral t approach in our Fortran program (with ρ ρ set to .7), we obtain the
following:

Thus, by combining predictor sort sampling with a tight t analysis, Winandy and others in-
creased their chances of detecting 10% mean differences by a factor of 1.5.

3.4 Analysis of Variance/Covariance

In actual practice, researchers seldom compare only two treatments. In general, there are multiple
“factors” (e.g., chemical concentration, adhesive type, drying procedure) that are tested at multiple
“levels.” For example, if there were three factors, each of which were tested at two levels, then the
design would be a 2 × 2 × 2. If there were r replicates in each of the 2 × 2 × 2 = 8 cells, 8 × r
specimens would be needed to perform the experiment.

Taking a predictor sort approach, one would order the 8 × r specimens on the basis of a
nondestructive predictor such as MOE, take the top 8 specimens and randomly assign them to the
8 cells, take the next 8 specimens and randomly assign them to the 8 cells, and so on.

To analyze these data one would take one of three approaches:

1. Use a standard unblocked analysis of variance (ANOVA) program, but replace the F values
reported in the program by F /(1 – ρ ρ 2) values, where ρ ρ is the correlation between the predictor
and the property being investigated.

2. Use a standard blocked analysis of variance in which the blocks were the groups of 8 specimens
with similar predictor properties. (Note that one would have to keep track of which specimens
were in which blocks.)
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3. Perform a standard analysis of covariance (ANOCOV) using the predictor as the covariate.
(Note that one would have to keep track of the value of the predictor for each specimen.)

The first two analysis approaches are only approximate for smaller sample sizes.
Our computer program performs power calculations and specimen allocations for this more gen-

eral case. (Currently it can handle at most 5 factors, a total of 25 levels, and 5,000 specimens.) The
program does not perform analyses for multiple factor experiments, but ANOVA and ANOCOV
programs that do perform such analyses are readily available (e.g., the SAS GLM procedure).

4 Monte Carlo Estimates of Critical Values

We ran 10,000 trials for each combination of n = 2k = 4,6,8(4)40(8)120, 160, 200, 300 and ρρ
= .40( .05).95, .99, 1.0. (The notation “8(4)40” stands for “from 8 to 40 in steps of 4.”) (Here,
k is the number of observations per treatment, and ρ ρ is the correlation between the predictor x
and the response y). To do so we used the uniform (UNI) and normal (RNOR) random number
generators developed by James Blue, David Kahaner, and George Marsaglia8 The absolute values
of the scaled pooled statistic (the usual pooled statistic divided by ~~7) and the usual paired
statistic were ordered, and order statistics 8001, 9001, 9501, 9801, and 9901 were used as estimates
of the two-sided .20, .10, .05, .02, .01 critical values. Using the techniques described in Verrill and
Johnson (1988), one can see that this approach yields the following .999 probability intervals on
the true sizes: [.187,.213], [.090,.110], [.043,.057], [.015,.025], and [.0066,.0134] (e.g., prob( ξ ξ .090 <
.10 cv estimate < ξ  ξ .110) = .999).

For each ρ ρ /size (.20, .10, .05, .02, or .01) combination, the critical values for n = 8(4)40(8)120,
160, 200, 300 were smoothed via the equation  cv
was fixed at the appropriate asymptotic criticzd value.

For ρ ρ = 1 (not covered by the Theorem), there are heuristic reasons for believing that            
times the usual pooled statistic converges in distribution to something approximating a linear
combination of independent double exponentials. Thus, in this case, we calculated the smoother
of the Monte Carlo critical values of the usual paired statistic, but we calculated the smoother of
the Monte Carlo critical values of                                                                     times usual pooled statistic.
To perform the pooled ρ ρ = 1 calculations, we fixed ~ at the average of the estimated critical
values for n = 104, 112, 120, 160, 200, 300. (Plots indicated that the critical values seemed to
have leveled off at an “asymptotic value” by n = 104. ) In the paired r = 1 case, a. was a free
parameter that was estimated in the smoothing process. The coefficients for the pooled statistics
are presented in Tables 1–5. Those for the paired statistics are presented in Tables 6–10. Since
the smoothing equations do not perform well for n < 8, the critical values for n = 4 and 6 and
size .05 are presented in Table 11. (Again the critical values reported in Table 11 for ρ ρ = 1 are the
critical values of the usual paired statistic, but the critical values of           times the usual pooled
statistic. )

The quality of the smoothed critical values was tested by performing an additional 10,000 trials
for each n, ρ ρ combination. Counts of the cases in which the smoothed critical values were exceeded
are summarized in Tables 12 and 13. To understand these tables one needs to note that if the
smoothed critical values were exact, then one would expect that

● 95% of the .20 two-sided size counts (for different n, ρ) ρ) will lie between 1922 and 2079,

8See the National Institute of Standards and Technology’s World Wide Web Guide to Available Mathematical
Software at http://gams.nist.gov
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● 95% of the .10 two-sided size counts will lie between 942 and 1060,

● 95% of the .05 two-sided size counts will lie between 458 and 544,

● 95% of the .02 two-sided size counts will lie between 173 and 228, and

● 95% of the .01 two-sided size counts will lie between 81 and 120.

(These limits are obtained using the arcsin square root transformation on the exceedance fraction.)
For a given ρ ρ there are 22 × 5 = 110 n ,size combinations (we exclude n = 4,6 as they were not
included in the smoothing calculation). The values in the column headed by “-” in Tables 12–16
indicate the number of times among the 110 that the counts fell below the 9570 limits. The values
in the column headed by “+” indicate the number of times that the counts fell above the limits.
The values in the column headed by “0” indicate the number of times that the counts fell within
the limits. The values in the column headed by .20 are the minimum and maximum over n =
8(4)40(8)120, 160, 200, 300 of the exceedance counts for the two-sided .20 critical values. Similar
remarks hold for the columns headed by .10, .05, .02, and .01. It is clear from Tables 12 and 13
that if one uses the smoothed critical values, the two-sided size will not be off by more than .01
for sizes .20 and .10, and .005 for size .05. In fact these figures are fairly conservative (as can be
seen by the frequency with which the counts fall within the 95% limits).

In Table 14 we present the corresponding results for the case in which “incorrect t values” are
used — we calculate a pooled t statistic that is not divided by ~~ and compare it to standard
t values, In this case it is clear that actual sizes fall far below nominal sizes. The resulting power
loss is discussed in Section 5.

In Tables 15 and 16 we present the results for the cases in which “correct t values” are used (the
pooled t statistic is divided by <~z before it is compared to standard t values). In the pooled
case, the tabled t values yield good approximations to the critical values of the scaled statistic for
ρ ρ < .80. In the paired case, the t approximation is satisfactory for ρ ρ as large as .90. For low n,
however, as ρ ρ increases beyond .90, the actual size falls below the nominal size and a small amount
of power (less than or equal to .15) is lost.

To get an idea of the sample sizes needed for the asymptotic critical values to be satisfactory,
for each ρ ρ /size combination we fit a curve of the form a.+ al/n1i2 + a2/n + a3/n3/2  to the counts
of the times that the asymptotic critcal values were exceeded in the 10,000 trials. (The value UQ
was fixed at 2000, 1000, 500, 200, or 100, depending on the size in question.) We then found the
n’ s at which these curves descended below 2200, 1100, 550, 250, or 125. These values are reported
in Table 17 for the pooled T and in Table 18 for the paired T. Note that as the size decreases or ρρ
increases (for the pooled case), the n needed to achieve good performance of the asymptotic values
also increases. On the other hand, for all but the highest ρ ρ , good performance is achieved for fairly
small n (less than 100 in the pooled case).

5 Power Study

We performed a power study that covered the cases in which ρ ρ = .4(.1) .8, .85(.05 ).95, .99, n = 2k
= 12(12)48, 72, 96, ∆ ∆ / σ σ y = 0.0(.25)1.5, and ρ ρ = .4(.1).8, .85(.05 ).95, .99, n = 2k = 4(2)14, ∆ ∆ / σ σ y

= 0.0(.5)3.0. Here ∆ ∆ is the mean difference between treatment 1 and treatment 2, and a; is
the variability of the y’s. The results of the study are presented in Tables 19 – 54, and can be
summarized as follows:

● Using a predictor sort followed by a standard analysis yields poor power properties.
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● The gain in efficiency of the tight t (pooled or paired) predictor sort approach over a standard
random sampling approach ranges from 33% to 800% as r increases from .5 to .99.

● For the ρ ρ = .7 case (common in wood strength research) sample sizes may be (approximately)
halved by using a tight t approach.

● Because of the difference in degrees of freedom, the pooled approach yields greater power
than the paired approach. For small n, the gain can be substantial (e.g., for a = .01, n = 8,
ρ ρ = .7, and ∆ ∆ / σ σ y = 2.5, the paired tight t yields power .42 while the pooled tight t yields
power .81).

● For ρ ρ < .85, the pooled tight t performs as well as an analysis of covariance. (The analysis
of covariance is based on the model y~j = aj + bzij + ~ij and tests whether al = az. Here y
denotes, for example, MOR, and x denotes, for example, MOE.) For small n (say, n < 14)
the pooled tight t actually performs better than an analysis of covariance (e.g., for a = .01,
n = 6, ρ ρ = .4, and ∆ ∆ / σ σ y = 3.0, a predictor sort followed by an analysis of covariance yields
a power of .29, while the pooled tight t yields power .45. ).

● In the pooled case, for n > 12, ρ ρ < .95, entering the critical value tables via estimated
ρ ρ 's causes no problems. (In our simulations, for each trial, r was calculated as the average
of the correlation between the predictor and the response for the treatment 1 sample, and
the correlation between the predictor and the response for the treatment 2 sample. For ji
less than .40, standard t tables were used to obtain critical values. For j between .40 and
.90, the interpolation was linear between the two nearest bracketing r ’s. For ~ greater than
.90, the critical value was a quadratic interpolation/extrapolation of the critical values for
ρ ρ = ,90,.9.5, and .99.)

For n < 12, ρ ρ < .95, entering the tables via p can yield inflated sizes, but if ρ ρ is known from
experience to within .05–.10, nominal and actual sizes match well. (In our simulations, for
each trial, “ ρ ρ from experience” was drawn from a N( ρ ρ , .052) distribution for ρ ρ < .90, from a
N( ρ ρ , .0252) distribution for .90 < ρ ρ < .95, and from a N( ρ ρ , .0052) distribution for ρ ρ = .99.)

For ρ ρ = .99, entering the tables via ~ yields inflated sizes, but the inflation decreases to
acceptable levels as n increases. For ρ ρ = .99, entering the tables via a ρ ρ “known from
experience” is unacceptable.

● Entering the critical value tables via estimated  ρ ρ ’s causes no problems in the paired case.

● For the pooled tight t, power results can be approximated well by taking a noncentral t
approach with noncentrality parameter equal to

and 2k – 2 degrees of freedom. Alternatively, power can be estimated by assuming that
The noncentral t approach yields perfectly

adequate approximations to the true power for ρ ρ < .80, For higher ρ ρ it tends to overestimate
power, but the overestimation decreases as n increases. The normal approach yields a more
significant overestimate of power, and its use should probably be restricted to lower ρ ρ and
higher n.

● Similarly, for the paired tight t, power results can be approximated by taking a noncentral t
approach with the same noncentrality parameter as in the pooled tight t case, but with k – 1
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degrees of freedom. Also, power can be estimated by the same normal approximation used in
the pooled tight t case. Again, the noncentral t approach yields good power approximations
for ρ ρ < .80 and for higher ρ ρ , n combinations. The power overestimation associated with the
normal approach is, of course, even more pronounced in the paired case.

● The noncentrality parameter associated with a two treatment analysis of covariance is

Thus it pays to minimize X.2 – X.l. For this reason, an analysis of covariance associated
with predictor sort sampling performs slightly better (a .01–.10 increase in power) than an
analysis of covariance associated with a standard random allocation.

● If the relationship between the predictor and the response is misspecified, then, even for very
high ρ ρ , the tight t’ s can yield better power than an analysis of covariance. For moderate
n, the misspecification can be difficult to detect. For example, for ρ ρ = .95, n = 24, and
∆ ∆ / σ σ y = 0.0(.1).8, we list the powers associated with tight t analyses ( ρ ρ estimated from the
data) and an analysis of covaiance in Table 55. The table is based on 10,000 computer
simulation trials per ∆ ∆ / σ σ value. The data sets for this analysis were generated by drawing
24 x values from a N(20,72) distribution, and obtaining y values from y = x3 + c where the
e’s were N(0, σ σ 2) with σ σ chosen so that the sample correlation between the x ’s and y’s was
approximately .95. An example of such a data set is presented in Figure 3.

Caveats

These conclusions do not necessarily hold for very small n (e.g., n < 12). If a user wishes to
work with samples of this size, the user should look to Tables 19–27 and 37–45 for specific guidance.
Also, note that critical values obtained from Tables 1-10 do not perform well for n = 4; instead,
see Table 11. (Tables 1 – 10 are based on smoothing curves fit to Monte Carlo critical values
obtained for n > 8. See Section 3. These curves do not extrapolate well down to n = 4.)

6 Tight t ’s as “Partially Paired” t ’s

It is edifying to see how the noncentrality parameter described in Section 5,

differs from those in the “pure” pooled and paired cases. (Bear in mind, however, that asp increases
to 1, the noncentral t approach to estimating power loses validity.) Consider the following error
model:

where Y is the property of interest, X is the predictor, are independent
random variables with means equal to 0 and variances equal to (Thus,

Here σ σ represents the “natural variation” shared by Y and X.
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represent the natural variation unique to Y and X.                        are the measurement errors. In this
case the noncentrality parameter appropriate to a pure pooled t analysis would be

The noncentrality parameter that it is possible that a statistician would recommend and that it
it is likely that a scientist would use (incorrectly) to calculate the sample sizes needed for a pure
paired t analysis would be

Since                                                    the noncentrality parameter that one would use (correctly) to
calculate the sample sizes needed for a predictor sort experiment would be

We see from this that the predictor sort approach succeeds in partially blocking out natural vari-
ation          If       is large in comparison to and          is high), then the tight t noncentrality
parameter is much larger than the pure pooled noncentrality parameter — the tight t yields a large
increase in power. However the the predictor sort approach does not succeed in blocking out all
natural variation (the              remain), and if             is not small in comparison to “standard” paired t
power calculations can seriously underestimate the sample sizes needed.

References
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Figure 1: Histogram of r for a correlation equal to .70 and total sample size of 48 (24 per
treatment) overlayed with the density function of a standard t distribution with 46 degrees of
freedom.

Figure 2: Power comparison. Here the correlation between the property and the predictor value is
.70. The total sample size is 48 (24 per treatment). A is the difference between the mean responses
for the two treatments. σ σ is the standard deviation of the response. The solid line is the power
curve for standard random sampling followed by a standard pooled t analysis. The dashed line
is the power curve for a predictor sort allocation followed (incorrectly) by a standard pooled t
analysis, The dotted line is the power curve for a predictor sort allocation followed (correctly) by
a pooled tight t analysis.
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Figure 3: 24 (x, y) pairs where x is drawn from a N(20,72) distribution,
from a N(0,a2)  distribution, and σ σ is chosen so that the sample correlation between x and y is
approximately .95.

is drawn.
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Appendix A — Proofs

Let H denote the inverse of the N(0,l) distribution function.

Lemma. Let U 1 n denote the first order statistic from a sample of n Uniform(0,l)’s. Then
converges in probability to 0.

Proof. Since  converges in distribution to an extreme value dis-
tribution, and                                 see, for example, Section 9.3 of David (1981)), the lemma
follows.

Proof of the Main Result

For ease of exposition, we will present the proof for the one-way case. The extension to a proof of
the n-way case is straightforward.

Since the ANOVA F statistics are invariant under changes in location and scale it is clear that we
can obtain statistics that have the relevant distributions by ordering the X’s, bringing along the
Y’ s, and randomly dividing among the J treatments. (Here, Yl,n is the l th
order statistic among the Y’ s. )

Let Wij denote the i th Y that is assigned to treatment j. Then
where are i.i.d. N(0,l) and are independent of the X’ s.
(Here, Xl,n is the l th order statistic among the X ’s.)

6.1 The Numerator of the F S t a t i s t i c s

The numerator of both the blocked and unblocked F statistics equals                                      where
I = n/J. This equals

Now

which converges in probability to zero by the Lemma. Also, it is clear that
These results, together with the Cauchy-Schwarz inequality, imply that

(1)
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6.2 The Unblocked F D e n o m i n a t o r

We have

It is clear that the first term in the last sum converges to 1 in probability as I = n/J goes to
infinity. By (1), the second term in the last sum converges in probability to zero, so the unblocked
denominator coverges in probability to 1.

6.3 The Blocked F Denominator

We have

(2)

By (1), the last term in equation (2) converges in probability to zero as I = n/J goes to infinity.
The first term equals

Clearly,

the Lemma, together with the Cauchy–Schwarz inequality, implies that the first term in equation
(2) converges in probability to 1- ρρ 2

. Making one last use of the Cauchy–Schwarz inequality (to
show that the second term in equation (2) converges in probability to zero), we see that the blocked
denominator converges in probability to 1 – ρ ρ 2.
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Appendix B — Tables

Index to the Tables

● Smoothing curve coefficients

– Pooled t, Tables 1–5

- Paired t, Tables 6-10

These tables can be used to calculate the critical values for pooled or paired tight t statistics.
For example, if the correlation between predictor and response (e.g., MOE and MOR) were
.7, and one wanted to use the pooled tight t with total ( n = 2 k ) sample size equal to 30, and
to do a test at a 5% significance level (a .05 “size”), then one would use the values in the .70
row of Table 3, and the equation

critical value =

to obtain the critical value

2.067 = 1.960 – .02812 /301/2 + 2.638/30 + 4.050/303/2.

If the absolute value of the pooled tight t statistic calculated from the data were greater than
this critical value, then one would reject the null hypothesis of equality of treatments.

● Monte Carlo critical values for n = 4 and 6, Table 11

For n < 8, one should not use Tables 1-10 to obtain critical values. Instead one can obtain
critical values directly from Table 11. (Table 11 contains critical values for a 5% significance
level.) For example, to obtain the appropriate critical value for a paired tight t test with
total sample size of 6 (3 samples per treatment) and a predictor/response correlation of .75,
one would look at the .7.5 row in Table 11 and then read over to the “Paired, n = 6“ column
to obtain 4.11. If the absolute value of the paired tight t statistic calculated from the data
were greater than this critical value, then one would reject the null hypothesis of equality of
treatments.

● Quality summaries of critical values, Tables 12–16

Tables 12-16 are described in Section 4. They are not used in the course of an analysis.
Instead they give us confidence that the tight t approach yields statistically defensible results.

● n required for good asymptotic, Tables 17 and 18

The theory in this paper tells us that as sample sizes get large, it is permissible to use critical
values from a normal distribution table for the paired and pooled tight t ’s. Tables 17 and 18
quantify what is meant by “get large.” (Note that one can always use Tables 1-11 to obtain
appropriate critical values even when sample sizes are not “large.”) For example, Table 17
tells us that if the predictor/response correlation is .65 and we want to perform a pooled
tight t test at a .5% significance level, then we must have a total sample size of 62 (31 per
treatment) if we are going to use critical values from a standard normal table.

● Power tables

— smaller n, larger ∆ ∆ / σ σ , .01 significance level, Tables 19–27
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– larger n, smaller ∆ ∆ / σ σ , .01 significance level, Tables 28–36

– smaller n, larger ∆ ∆ / σ σ , .05 significance level, Tables 37–45

– larger n, smaller ∆ ∆ / σ σ , .05 significance level, Tables 46-54

Tables 19–54 need to be explained in some detail. Columns 3-13 give power values that were
estimated from computer simulation runs. These runs involved 10,000 trials per correlation,
sample size combination. Columns 14 – 16 are based on calculations involving the noncentral
t distribution and the normal distribution. The formulas used are described below.

1. Column 1 — “n.” The total sample size. There are n /2 observations per treatment.

2. Column 2 — “ ∆ ∆ / σ σ .” The treatment difference divided by the response standard de-
viation. For example, if we are interested in being able to detect a 10% treatment
difference, and we expect a 20% coefficient of variation, then ∆ ∆ = .10 × treatment mean
and σ σ = .20 × treatment mean, so ∆ ∆ / σ σ = 0.50.

3. Column 3 — “Incorrect predictor sort.” This is the power that one can expect when
one performs a predictor sort before the experiment, but then one analyzes the resulting
data with a standard pooled t test.

4. Column 4 — “Standard random sampling pooled t.” This is the power that one can
expect when one performs a standard randomization before the experiment and analyzes
the resulting data with a standard pooled t test.

5. Column 5 — “Tight t /Known ρ ρ /Paired/Sim.” This is the power that one can expect
when one performs a predictor sort before the experiment, calculates a standard paired
t statistic from the data, and compares the value of this statistic with critical values
obtained from Tables 6-11 using the known ρ ρ value.

6. Column 6 — “Tight t /Known ρ ρ /Paired/ t table.” This is the power that one can expect
when one performs a predictor sort before the experiment, calculates a standard paired
t statistic from the data, and compares the value of this statistic with critical values
obtained from a standard t table,

7. Column 7 — “Tight t /Known ρ ρ /Pooled/Sim.” This is the power that one can expect
when one performs a predictor sort before the experiment, calculates a standard pooled
t statistic from the data, divides by ~~ ( ρ ρ known) to obtain the pooled tight t
statistic, and compares the value of this statistic with critical values obtained from
Tables 1-5 and 11 using the known ρ ρ value.

8. Column 8 — “Tight t /Known ρ ρ /Pooled/ t table.” This is the power that one can expect
when one performs a predictor sort before the experiment, calculates a standard pooled
t statistic from the data, divides by ~~ ( ρ ρ known) to obtain the pooled tight t
statistic, and compares the value of this statistic with critical values obtained from a
standard t table.

9. Column 9 — “Tight t /Unknown ρ ρ /Paired/ ρ ρ estimated.” This is the power that one can
expect when one performs a predictor sort before the experiment, calculates a standard
paired t statistic from the data, and compares the value of this statistic with critical
values obtained from Tables 6–11 using the ρ ρ value that is estimated from the data
(the average of the sample correlation between the predictor and response for the first
treatment, and the sample correlation between the predictor and the response for the
second treatment).
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10. Column 10 — “Tight t /Unknown ρ ρ /Pooled/ ρ ρ estimated.” This is the power that one can
expect when one performs a predictor sort before the experiment, calculates a standard
pooled t statistic from the data, divides by ~~z ( ρ ρ estimated from the data as
described below), and compares the value of this statistic with critical values obtained
from Tables 1-5 and 11 using the ρ ρ value that is estimated from the data (the average of
the sample correlation between the predictor and response for the first treatment, and
the sample correlation between the predictor and the response for the second treatment).

11. Column 11 — “Tight t /Unknown ρ ρ /Pooled/ ρ ρ from experience.” This is the power that
one can expect when one performs a predictor sort before the experiment, calculates a
standard pooled t statistic from the data, divides by (~z ( ρ ρ “from experience,” as
described below), and compares the value of this statistic with critical values obtained
from Tables 1-5 and 11 using a ρ ρ value that is “known from past experience.” In our
simulations, there was an actual ρ ρ g that was used to generate the data, e.g., .70. In
addition, for each trial, “ ρ ρ from experience” was drawn from a N( ρ ρ g , .052) distribution
for ρ ρ g < .90, from a N( ρ ρ g , .0252) distribution for .90<  ρ ρ g < .95, and from a N( ρ ρ g , .0052)
distribution for ρ ρ g = .99. Thus, for example, for data generated from ρ ρ g = .70, on a
given trial we might be calculating a pooled tight t statistic and entering a critical value
table via a “ ρ ρ from experience” of 0.64 or 0.73 or . . . .

12. Column 12 — “Analysis of covariance/Random sampling.” This is the power that one
can expect when one performs a standard randomization before the experiment and
analyzes the resulting data with an analysis of covariance.

13. Column 13 — “Analysis of covariance/Predictor sort.” This is the power that one can
expect when one performs a predictor sort allocation before the experiment and analyzes
the resulting data with an analysis of covariance.

14. Column 14 — “Theoretical power/Noncentral t /Paired.”
Here k = n /2. The value reported in the tables is

where t g is a noncentral t statistic with noncentrality parameter

and tk –1(.025) is the one-sided .025 critical value for a central t with k – 1 degrees of
freedom.

15. Column 15 — “Theoretical power/Noncentral t /Pooled.”
Here k = n /2. The value that is reported in the tables is

where t g is a noncentral t statistic with noncentrality parameter

and t 2 k- 2 (.025) is the one-sided .025 critical value for a central t with 2 k – 2 degrees of
freedom.
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16. Column 16 — “Theoretical power/ Normal.”
Here k = n /2. For .05 size tables, the value that is reported in the tables is

where Φ is the normal cumulative distribution function. For the .01 size tables, the
value is

● Power for a misspecified model, Table 55

The material in this table illustrates that if the relationship between the predictor and the
response is not really a bivariate normal relationship, then the analysis of covariance approach
can yield power values that are lower than those of the pooled and paired tight t even for very
high correlations. These power values are based on computer simulations involving 10,000
trials per ∆ ∆ / σ  σ  value.

● Data for Example 1 of Section 3, Table 56
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Table 1: Smoothing curve coefficients, pooled t, Table 3: Smoothing curve coefficients, pooled t,
two-sided size = .20 two-sided size = .05

Table 2: Smoothing curve coefficients, pooled t, Table 4: Smoothing curve coefficients, pooled t,
two-sided size = .10 two-sided size = .02
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Table 5: Smoothing curve coefficients, pooled t,
two-sided size = .01

Table 7: Smoothing curve coefficients, paired t,
two-sided size = .10

Table 6: Smoothing curve coefficients, paired t, Table 8: Smoothing curve coefficients, paired t,
two-sided size = .20 two-sided size = .05
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Table 9: Smoothing curve coefficients, paired t, two-sided size = .02

Table 10: Smoothing curve coefficients, paired t, two-sided size = .01
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Table 11: Monte Carlo critical values, two-sided size = .05
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Table 12: Quality summary, pooled statistic, smoothed critical values

Table 13: Quality summary, paired statistic, smoothed critical values
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Table 14: Quality summary, pooled statistic, incorrect t critical values

Table 15: Quality summary, pooled statistic, “correct” t critical values
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Table 16: Quality summary, paired statistic, “correct” t critical values
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1For the purposes of the study, “good” means that the actual sizes are below .22, .11, .055, .025, and .0125 for
the nominal .20, .10, .05, .02, and .01 cases. The fact that .005 is 10% of .05 and .005 is 25% of .02 accounts for the
non-monotonic sample sizes.
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Table 55: Power, ρ ρ = .95, n = 24, nominal size = .01, misspecified model
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Table 56: Example data
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Table 56 continued: Example data
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Table 56 continued: Example data
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