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Abstract

Certain issues in recent softwood lumber trade negotiations
have centered on the method for converting estimates of
timber volumes reported in cubic meters to board feet. Such
conversions depend on many factors; three of the most im-
portant of these are log length, diameter, and taper. Average
log diameters vary by region and have declined in the west-
ern United States due to the growing scarcity of large diame-
ter, old-growth trees. Such a systematic reduction in size in
the log population affects volume conversions from cubic
units to board feet, which makes traditional rule of thumb
conversion factors antiquated. In this paper we present an
improved empirical method for performing cubic volume

to board foot conversions.
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Estimating the Board Foot to Cubic Foot
Ratio

Steve Verrill, Mathematical Statistician
Victoria L. Herian, Statistician

Henry Spelter, Economist

Forest Products Laboratory, Madison, Wisconsin

1 INTRODUCTION

In the United States, output-based log measurement systems for estimating timber volumes are still
in common use. The resulting estimates are expressed in board feet. In other countries, full-log
volume systems (firmwood scales) are used, and the results are reported in cubic meters. These
approaches to log measurement are fundamentally different. Output-based scales estimate only
the portion of a log recoverable as finished primary product (i.e., lumber) based on the small-end
diameter. Cubic rules measure the full volume of sound wood, inclusive of lumber, chips, and
sawdust. This leads to differences between the approaches that can be summed up as follows:

1. In an output-based log scale, a log’s volume is approximated as a cylinder based on the small-
end diameter. In firmwood scales, the full volume is approximated via methods that depend
on both end diameters. Thus, firmwood scales take into account the volume contained in the
tapered portion outside of the central cylinder, while output-based scales generally neglect
this material.

2. Because of differences in measurement protocols (e.g., measurements are rounded down in
the Scribner scaling rules applied on the U.S. West Coast), the reported length and diameter
of a log can be smaller in some output-based scales than in a firmwood-based scale.

3. Output-based measures estimate the board feet of lumber that can be extracted from a
cylinder based on cutting diagrams that exclude a portion of the cylinder as waste. In
firmwood scales the entire volume is taken into account.

4. Because of the different philosophies underlying output scales (based on lumber yield) and
firmwood scales (based on fiber yield), trim and defect deductions are often greater in output-
based scales than in firmwood-based scales.

Differences among scaling systems and the shortcomings of output-based scales in particular
have long been noted (Rapraeger, 1950). The greater stability and consistency of measurements
obtained by firmwood-based cubic approaches have also been noted, leading to recommendations
to abandon output-based scaling in favor of cubic scaling (Orchard, 1953). Such transitions have
occurred in Canada and partially in the United States where Federal land management agencies
have switched operations to cubic scaling (USDA Forest Service, 1991). Nevertheless, output-based
board foot rules are still widely used in the United States, and this poses problems when volumes
and values calculated under the two systems need to be compared.

Past approaches to volume conversions of log populations implicitly rested on the assumption
that the underlying size characteristics of the timber supply were stable. Thus, conversions could
be calculated by the application of constants derived from historical observations of the resource.



A more flexible approach to conversions between scales was undertaken by Cahill (1984), who
developed empirical equations relating volume in cubic feet to volume in board feet as a function
of scaling diameter. While an improvement over the use of historical rules of thumb, this approach
did not explicitly incorporate the effects of other variables such as length and taper. In our current
work we propose a model that does take into account log length and taper. We account for other
variables (e.g., defect and trim allowances) by calibrating the model against a large West Coast
population of logs for which both Scribner output-based rule measurements (Decimal C version)
and metric cubic measurements are available. We have produced a web-based computer program
that implements this calibrated model.

Our work suggests that the model would be useful to economists who wish to convert values of
log populations denominated in Scribner board feet in the coastal western United States to/from
values expressed in British Columbia cubic units. However, for other regions where the short log
version of the Scribner formula is applied, the model needs to be calibrated against additional data
sets. We hope to accomplish this calibration in the near future.

2 THE F; x Fy x F; MODEL

We would like to develop a model that predicts the board foot to cubic foot ratio for a population
of logs from the population average®* small-end diameter, length, and taper. To do so we first
concentrate on a single log and then generalize the approach to a population of logs. For a single
log, ignoring trim and defects, we have

board feet from table

cubic feet ~ B x Byx (1)
where
F; = (cylinder volume)/(truncated cone volume)
F, = (approximate cylinder volume)/(cylinder volume)
F; = (board feet from table)/(approximate cylinder volume)

These definitions are depicted graphically in Figure 1. The “truncated cone volume” is an
approximation to the full volume of the log.! If the truncated cone has small-end diameter Dg and
length L, then the “cylinder volume” is the volume of a cylinder with diameter Dg and length L.
In West Coast Scribner rules, the diameter and length are truncated down so the “approximate
cylinder volume” will be less than the cylinder volume. In East Coast rules, the diameter is rounded
to the nearest inch and the length is rounded to the nearest foot. In this case the approximate
cylinder volume can be either above or below the cylinder volume. The “board feet from the table”
is obtained by entering the Scribner table via the diameter and length of the approximate cylinder.

3 THE F; FACTOR

In the Appendix we show that
Fy =1/(1+ R+ R?/3) (2)

where R = (T x L)/Dgs, T = taper, L = length, and Dg = small-end diameter.

*These averages should be weighted averages where the weight associated with a log is proportional to the log’s
cubic volume.

"We realize that this is only an approximation. An alternate approximation would be the volume of a frustrum
of a paraboloid. This leads to the Smalian formula. In general, the two approaches yield very similar results.




4 F3><F2

We have
board feet from table

cylinder volume
board feet from table

nD2L/4

Fs x F, =

This ratio can be calculated exactly from the Scribner table and the relevant rounding rules. For
example, consider a 21.3-foot log with a 7.6-inch small-end diameter.

Under West Coast rounding rules, the length and diameter are truncated to 21 feet and 7 inches,
and the F3 x Fy valuet can be calculated as

Fy x Fy = 30/(m x (7.6/12)? x 21.3/4) = 4.47

where the 30 comes from the 21-foot length, 7-inch diameter entry in the Scribner table.
Under East Coast rounding rules, the length is rounded to the nearest foot — 21 feet, and the
diameter is rounded to the nearest inch — 8 inches. In this case we have

Fy x Fy = 40/(m x (7.6/12)? x 21.3/4) = 5.96

where the 40 comes from the 21-foot length, 8-inch diameter entry in the Scribner table.

5 APPLYING THE F; x F, x F;y MODEL TO A POPULATION
OF WEST COAST LOGS

The Scribner table is not a smooth function of log length and diameter. It includes values for 1-foot
increments in log length and 1-inch increments in small-end diameter. Board foot values remain the
same for increasing lengths and diameters and then suddenly jump. These jumps in the Scribner
table board foot values lead to jagged plots of F3 x Fy values — while Scribner board foot values
are staying constant, the cylinder volumes are increasing so the F3 x F5 values are declining; then
when the Scribner value suddenly jumps, the F3 X Fy value suddenly jumps as well. A plot of
the resultant unsmooth Fj x F, surface given West Coast diameter and length truncation rules is
presented in Figure 4.

One approach to applying the F3 x F5 x Fy model to a population of logs would be to calculate
the volume weighted average small-end diameter, length, and taper for the population. These values
would then be plugged into Equation (2) to obtain an Fy value. The Scribner table and the volume
weighted average small-end diameter and length would be used to obtain an F3 x F5 value. Then
the estimated board foot to cubic foot ratio for the population would be reported as F3 x Fy x F.
A problem with this approach is the unsmooth nature of the F5 x Fy surface. Because of this
roughness, very small changes in the population means could lead to large swings in the conversion
factor. For example, as noted in footnote 4, if a population had a volume weighted mean length of

fNote that since F; x F5 equals the board feet that can be obtained from a cylinder divided by the volume of the
cylinder, and board feet is reported in feet x feet x inches rather than cubic feet, under West Coast rules the value
of F3 x F3 is bounded above by 12.

$For example, the table entry for a log of length 12 feet (see Figure 2) and small-end diameter 9 inches is 30. For
length 12 feet and diameter 10 or 11 inches, the entries are 40; for length 12 feet and diameter 12 inches, the entry is
60. For logs of diameter 9 inches (see Figure 3) and lengths 16 through 18 feet, the entries are 40; for logs of diameter
9 inches and lengths 19 through 22 feet, the entries are 50; and so on.



12 feet and volume weighted mean small-end diameter of 11.99 inches, the calculated F3 x F5 would
be about two-thirds (40/60) of the F3 x Fy value for a population with volume weighted mean
length of 12 feet and volume weighted mean small-end diameter of 12 inches. This is unacceptable.
To avoid this problem we smooth the F3 x F, surface.

6 SMOOTHING THE F; x F, SURFACE

Many techniques are available for smoothing a two-dimensional surface. One technique in common
use is the Gaussian kernel smoothing approach. In essence this method replaces the value f(zo,yo)
in a surface with

Smf(ﬂﬂo,yo) =
S I f(@y) % o= exp(—(z — 20)%/02) exp(—(y — yo)?/02)dz dy
J2 [0 exp(—(z — 20)?/02) exp(—(y — yo)?/o2)dx dy

In words, this approach replaces the value at length ¢ and diameter yg in the F3 X F5 surface with
a weighted averageV of the nearby F3 x F, values where the weights decline as the lengths and
diameters move away from zg,yo. The parameters o, and oy determine how rapidly the weights
decline. Small o values lead to weights that decline rapidly, the smoothing is minimal, and the
smoothed surface remains relatively jagged. Large o values lead to weights that decline slowly
and the surface is highly smoothed. In the limit, as the o’s get very large, the smoothed surface
becomes a horizontal plane.

(3)

7 OPTIMAL SMOOTHING PARAMETER

In our work the parameter a (recall from footnote 5 that o, = a x g, 0y = @ X yp) determines
the smoothness of the smoothed F3 x F5 surface. Figures 5 and 6 present the smoothed surfaces
that result for &« = 0.05 and o = 0.10. As « increases, the surface becomes smoother. How do we
choose the appropriate level of smoothness? When a = 0, we get the original jagged surface, but
when « gets very large, we get the unweighted average of all of the F3 x Fy values, which is a poor
representation of what is going on. Obviously we need « to take on some intermediate value.

The optimal o depends upon what we want to do, and it will be objective and data dependent.
In our case we were working with a data set of 455,382 West Coast logs. We wanted our model
to do a good job of predicting the board foot to cubic foot ratios for subpopulations of these logs.
We proceeded as follows. First we sorted the logs by small-end diameter. Then we formed 45
subpopulations of 10,000 logs each. The first subpopulation contained the logs with the 10,000
largest small-end diameters. The next subpopulation contained the 10,000 logs with the next
largest small-end diameters and so on. For each subpopulation we calculated volume weighted
average small-end diameter, length, and taper. We used these averages in Equation (2) to obtain
an F; value. We used the average length as ¢ and the average small-end diameter as yy to enter
the smoothed Scribner table (smoothed using the chosen value for o) and obtained an Fj x Fy
value. We calculated the actual gross board feet for the subpopulation by adding the gross board
foot values for all the logs in the subpopulation. We calculated the actual net cubic feet for the

9In our implementation we did not actually perform the integration in Equation (3). This would be a difficult
task for a numerical integration routine because of the jagged nature of the surface. Instead we performed a Monte
Carlo integration. We drew 10000 (z,y) values from a bivariate normal distribution with mean (zo, yo), 0z = a X o,
oy = a X Yo, and covariance(z,y) = 0, where a is the “smoothing parameter” (see Section 7). We then calculated
F;5 x F> at each of the sampled (z,y) pairs that lay in the table and averaged the results.



subpopulation by adding the net cubic foot values for all the logs in the subpopulation. The actual
gross board foot to net cubic foot ratio for the subpopulation was the ratio of these two totals. The
predicted ratio was F3 X F5 x Fi. We then performed a regression that fit the 45 actual ratios to the
45 predicted ratios. The root mean squared error (RMSE) from this regression was the measure
of the performance of the smoothing parameter. The smaller the RMSE, the better. Figure 7 is a
plot of RMSE versus « value. For this data set and the 45 subpopulations, the optimal smoothing
parameter value was approximately 0.025.

We repeated this procedure for subpopulations of size 20,000, 40,000, and 90,000. The charac-
teristics of the resulting subpopulations are displayed in Tables 1 to 4. The corresponding RMSE
versus smoothing parameter plots suggested that a smoothing parameter of 0.08, while not optimal
in all cases, would be a reasonable compromise and would lead to good RMSE values in all cases
considered.

8 CALIBRATION

In our data set we had information that permitted us to calculate the net board feet, the gross
board feet, and the net cubic feet for each log. In the top half of Figure 8, we plot the observed
gross board foot to net cubic foot ratio (BFDCFGN) versus F5 x Fy x Fy for 1,000 logs randomly
selected from the population of 455,382 logs. The solid line in the plot is the y = z line.

In the bottom half of Figure 8, we plot the observed net board foot to net cubic foot ratio
(BFDCFNN) versus F3 x F x F for the same 1,000 randomly selected logs. Again, the solid line
in the plot is the y = x line.

To calibrate the model to the data we performed regressions of BFDCFGN and BFDCFNN on
F3 x Fy x Fy for 20,000 logs randomly selected from the full population.

The resulting calibration equations are

BFDCFGN = —0.01048 4+ 0.9742 x F3 x Fy x Fy (4)

and
BFDCFNN = 0.1316 + 0.9255 x F3 x Fy x F} (5)

These models were then applied!! to predicting the ratios associated with the 45 subpopulations
of size 10,000, 22 subpopulations of size 20,000, 11 subpopulations of size 40,000, and 5 subpopu-
lations of size 90,000 described above. We provide the resulting plots of predicted versus observed
ratios in Figures 9 to 12. The corresponding root mean squared errors (RMSEs) for the BFDCFGN
plots are 0.129, 0.118, 0.090, and 0.073. Those for the BFDCFNN plots are 0.132, 0.121, 0.101,
and 0.085. For the full data set the observed BFDCFGN is 4.97 and the predicted value is 5.02.
The observed BFDCFNN is 4.85 and the predicted is 4.91.

When we calibrate Cahill’s model to the data set of 20,000 randomly selected logs and then
apply the model to the subpopulations, the BFDCFGN RMSE values are 0.249, 0.185, 0.173, and
0.082. The BFDCFNN RMSE values are 0.257, 0.185, 0.171, and 0.081. The predicted BFDCFGN
value for the whole population is 4.66**(4.97 observed), and the predicted BEDCFNN is 4.58**
(4.85 observed).

ITo use Equations (4) and (5), we calculate Fy via Equation (2) and net cubic volume weighted average diameter,
length, and taper. F3 X F5 is taken to be the value of the smoothed F3 x F» surface (with the smoothing parameter
set equal to 0.08) at the net cubic volume weighted average diameter and length.

**As suggested by Cabhill, we calculated these values using the quadratic mean diameter. If we instead use the
cubic volume weighted average diameter, we obtain 5.10 rather than 4.66, and 4.99 rather than 4.58.



9 PROBLEMS

The most obvious problem with models (4) and (5) is that the calibration coefficients were deter-
mined for a particular data set. A priori we have no way of knowing whether these values are
appropriate for other West Coast data sets. We would expect them to be even less appropriate for
East Coast data sets that involve different rounding rules. This question can only be resolved by
looking at other data sets.

Two problems are associated with our use of weighted averages. First there is a theoretical
problem. For the ith log in a population of logs, we have the mathematical equation

BFDCFGN; = f(diameter;, length;, taper;) + ¢; (6)

where BFDCFGN; is the gross board foot to net cubic foot ratio for the log. The function f
incorporates the relation between a truncated cone and a cylinder, the rounding of diameter and
length values, and the smoothed Scribner table. The error, ¢;, incorporates the departure of the log
shape from that of a truncated cone, measurement error, and so on. Although we might expect this
relationship to hold for individual logs, it is not immediately clear that it will yield good results
for a population of logs. In particular, a priori we do not know whether Equation (6) implies

where

n
D= Z diameter; x W; = the volume weighted average diameter
i=1
(the weight W; equals (cubic feet);/(total cubic feet))

n
L= Z length, x W; = the volume weighted average length
i=1

n
T = Ztaperz- x W; = the volume weighted average taper

i=1
However, we do have
n
BFDCFGNpop = Z(f(diameteri, length,, taper;) + ;) x W; (8)
i=1
or, after a Taylor series expansion,
n
BFDCFGNpop = Y _[f(D,L,T) + (0f/0D)(diameter; — D) (9)
i=1

+ (0f/OL)(length; — L) + (0f /OT)(taper; — T)] x W;

n
+ weighted average of second order Taylor series terms + Z e;W;
i=1
Thus,
BFDCFGNpop = f(D, L,T) (10)



n
+ weighted average of second order terms + Z eW;

i=1
and approximation (7) does hold provided that the weighted average of second order Taylor series
terms and the weighted average of the errors are small relative to f(D, L,T). Now, a priori, we
do not know whether this proviso holds. However, we have found empirically that result (7) is
indeed a good approximation for our population of 455,000 logs and the subpopulations that we
considered (see Figures 9 to 12). Of course we will have to test whether this approximation works
well for other populations before we recommend the procedure in general.

The second problem associated with weighted averages is a practical one. How does one obtain
estimates of these weighted averages of diameter, length, and taper for a population? Further, if
one has sufficient information to obtain such averages, isn’t one likely to have enough information
to calculate the board foot to cubic foot ratio almost exactly? After all, to calculate the averages
exactly one would have to have diameter, length, and taper for every log in the population.

Our answer is that it is uncommon to have all of these data for a region. More often, for
economic analyses, these values have to be assumed or extracted from small samples. Equations
(4) and (5) offer a way to investigate the effects of errors in the assumptions, or biases in the limited
data.

10 COMPUTER PROGRAM

We have developed a FORTRAN computer program that implements our estimation procedures.
Given cubic volume weighted average diameter, length, and taper values (before truncations and
before defect deductions), the program uses Equation (2) to calculate Fy. It smooths the F3 x F,
surface at the volume weighted average diameter and length to obtain an F3 x F5 value, and it then
reports the predicted BEDCFGN ratio as BEFEDCFGN = —0.01048 + 0.9742 x F3 x Fy X F; and the
predicted BFDCFNN ratio as BEFEDCFNN = 0.1316 + 0.9255 x F3 x Fy x Fj.

We have put a Web forms front end on this program and it can be run at
http://wwwl.fpl.fs.fed.us/conversion.html. (If your domain name server fails to resolve this
address, you should try http://128.104.77.229/conversion.html.)

11 CONCLUDING REMARKS

We have developed a method for estimating the board foot to cubic foot ratio from the volume
weighted average diameter, length, and taper of a log population. Currently we know that this
method performs well for a particular West Coast population of logs. We will be attempting to
extend it to a wider population of West Coast logs and to modify it to be appropriate for East Coast
log populations. We have implemented the current method as a FORTRAN computer program
that can be run over the Web.
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APPENDIX — THE F; FACTOR
Here we justify the approximation
Fy =~ 1/(1+ R+ R?/3)

where R = (T x L)/Ds, T is the taper of the log, L is the length of the log, Dg is the small-end
diameter of the log, and F} is the ratio of the volume of the central cylinder of the log to the full
volume of the log.

To establish this we first note that

truncated cone volume = wL(D32 + DsD; + D?)/12 (11)
where Dg is the small-end diameter and D is the large-end diameter. Next we have
Dy =Ds+TxL
Replacing D; in Equation (11) by Dg + T x L we obtain

truncated cone volume = WL(D% + Ds(Ds + TL) + (Ds + TL)Q)/12
= 7L(3D2 4+ 3DsTL + (TL)?)/12

Thus,

Fy

Q

the ratio of the volume of the central cylinder of a truncated cone
to the full volume of the truncated cone

= (nLDZ/4)/(nL(3D% + 3DsTL + (TL)?*)/12)

= 1/(14+TL/Ds + (TL/Dg)?*/3) = 1/(1 + R + R*/3)
where R = T'L/Ds, which is what we wanted to establish.

Note that the adequacy of this approximation will depend on the extent to which the shape of
the log can be approximated by a truncated cone.



Table 1.
diameter

Forty-five subpopulations

of size 10,000 ordered by increasing metric log

Metric Total Total Total
volume weighted Scribner gross net net
average defect Scribner | Scribner metric BFDCF | BFDCF
diameter! | length? | taper® | fraction” | volume® volume® volume” GN8 NN?
6.30 38.35 | 0.0862 | 0.697E-2 | 0.583E+6 | 0.579E+6 | 0.137E+6 4.26 4.23
6.30 35.14 | 0.1022 | 0.953E-2 | 0.486E+6 | 0.481E+6 | 0.123E+-6 3.95 3.91
6.30 30.63 | 0.1335 | 0.278E-1 | 0.374E+6 | 0.364E+6 | 0.111E+6 3.36 3.27
6.84 36.93 | 0.0995 | 0.836E-2 | 0.560E+6 | 0.555E+6 | 0.150E+-6 3.73 3.70
7.09 39.25 | 0.0793 | 0.167E-2 | 0.654E+6 | 0.653E+6 | 0.164E+-6 3.98 3.97
7.09 32.97 | 0.1228 | 0.130E-1 | 0.484E+6 | 0.478E+6 | 0.141E+6 3.42 3.38
7.65 37.54 | 0.0968 | 0.782E-2 | 0.652E+6 | 0.647E+6 | 0.181E+46 3.60 3.57
7.87 39.42 | 0.0784 | 0.633E-2 | 0.771E+6 | 0.766E+6 | 0.194E4-6 3.97 3.94
7.96 33.45 | 0.1303 | 0.208E-1 | 0.572E+6 | 0.560E+6 | 0.177E+6 3.23 3.17
8.66 37.55 | 0.0826 | 0.898E-2 | 0.791E+6 | 0.784E+6 | 0.214E+6 3.69 3.66
8.66 37.86 | 0.0840 | 0.119E-1 | 0.809E+6 | 0.799E+6 | 0.215E+-6 3.76 3.71
9.04 35.69 | 0.1109 | 0.213E-1 | 0.803E+6 | 0.785E+6 | 0.227E+6 3.54 3.46
9.45 36.73 | 0.0824 | 0.574E-2 | 0.967E+6 | 0.961E+6 | 0.240E+-6 4.03 4.00
9.45 38.56 | 0.0813 | 0.106E-1 | 0.107TE+7 | 0.106E+7 | 0.258E+-6 4.14 4.09
9.45 38.24 | 0.0810 | 0.435E-2 | 0.104E+7 | 0.103E+7 | 0.255E+-6 4.07 4.05
9.48 34.89 | 0.1200 | 0.279E-1 | 0.889E+6 | 0.864E+6 | 0.241E+6 3.68 3.58
10.24 37.38 | 0.0864 | 0.109E-1 | 0.131E+7 | 0.129E+7 | 0.285E+-6 4.58 4.53
10.24 38.53 | 0.0826 | 0.984E-2 | 0.138E+7 | 0.137E+7 | 0.296E+-6 4.68 4.63
10.24 36.70 | 0.1015 | 0.206E-1 | 0.127E+7 | 0.125E+47 | 0.285E+-6 4.47 4.38
10.95 37.22 | 0.0922 | 0.134E-1 | 0.146E+7 | 0.144E47 | 0.322E+6 4.55 4.48
11.02 38.67 | 0.0839 | 0.816E-2 | 0.154E+7 | 0.152E+7 | 0.339E+-6 4.53 4.49
11.02 37.07 | 0.0990 | 0.202E-1 | 0.144E+7 | 0.141E+47 | 0.326E+-6 4.41 4.32
11.62 36.29 | 0.1032 | 0.154E-1 | 0.151E+7 | 0.149E+7 | 0.352E+-6 4.28 4.22
11.81 38.27 | 0.0860 | 0.957E-2 | 0.168E+7 | 0.166E+7 | 0.379E+-6 4.43 4.38
12.13 36.22 | 0.1111 | 0.220E-1 | 0.158E+7 | 0.155E47 | 0.382E+-6 4.15 4.06




Table 1.

Forty-five subpopulations

of size 10,000 ordered by increasing metric log

diameter — con.
Metric Total Total Total
volume weighted Scribner gross net net
average defect Scribner | Scribner metric BFDCF | BFDCF
diameter! | length? | taper® | fraction” | volume® volume® volume” GN8 NN?
12.60 37.50 | 0.0919 | 0.103E-1 | 0.177E+7 | 0.175E+4+7 | 0.417E46 4.25 4.20
12.60 37.78 | 0.0904 | 0.183E-1 | 0.181E+7 | 0.178E+47 | 0.423E+-6 4.29 4.21
12.75 36.16 | 0.1149 | 0.225E-1 | 0.174E+7 | 0.170E+7 | 0.418E+6 4.15 4.05
13.39 37.09 | 0.0990 | 0.114E-1 | 0.212E+47 | 0.209E+47 | 0.463E+6 4.57 4.51
13.39 37.54 | 0.0972 | 0.170E-1 | 0.217E+7 | 0.213E+7 | 0.470E+-6 4.62 4.54
14.04 36.10 | 0.1118 | 0.194E-1 | 0.225E+7 | 0.220E+7 | 0.492E+-6 4.57 4.48
14.17 38.15 | 0.0980 | 0.163E-1 | 0.250E+7 | 0.246E+7 | 0.533E+-6 4.68 4.60
14.35 36.80 | 0.1097 | 0.256E-1 | 0.244E+7 | 0.238E+7 | 0.520E+-6 4.70 4.58
14.96 37.04 | 0.1017 | 0.188E-1 | 0.272E+7 | 0.267E+7 | 0.565E4-6 4.81 4.72
15.29 36.83 | 0.1109 | 0.263E-1 | 0.286E+7 | 0.279E+7 | 0.590E+-6 4.85 4.72
15.75 37.42 | 0.1025 | 0.159E-1 | 0.318E+7 | 0.313E+47 | 0.629E+-6 5.05 4.97
15.89 37.30 | 0.1079 | 0.239E-1 | 0.324E+7 | 0.317E+7 | 0.641E+6 5.06 4.94
16.53 37.39 | 0.1032 | 0.180E-1 | 0.355E+7 | 0.349E+7 | 0.687E+6 5.17 5.08
17.18 37.10 | 0.1116 | 0.181E-1 | 0.383E+7 | 0.376E+7 | 0.734E+6 5.21 5.12
17.63 37.21 | 0.1119 | 0.229E-1 | 0.413E+7 | 0.403E+7 | 0.776E+6 5.32 5.20
18.57 37.26 | 0.1116 | 0.210E-1 | 0.463E+7 | 0.453E+7 | 0.850E+-6 5.45 5.33
19.41 37.22 | 0.1155 | 0.254E-1 | 0.512E+7 | 0.499E+7 | 0.927E+6 5.53 5.39
20.76 36.96 | 0.1174 | 0.282E-1 | 0.621E+7 | 0.603E+7 | 0.104E+7 5.98 5.81
22.82 36.58 | 0.1218 | 0.322E-1 | 0.744E+7 | 0.720E+7 | 0.122E+7 6.10 5.90
29.94 34.78 | 0.1375 | 0.530E-1 | 0.120E+8 | 0.114E+8 | 0.181E+7 6.64 6.29

!Small-end metric diameter in inches, recorded as radius in centimeters and then converted to diameter in inches,
weighted by metric volume.

2Metric length in feet, converted from decimeters, weighted by metric volume.

3Metric taper: ((large-end radius in cm - small-end radius in cm) x 2 )/(2.54 x metric length in feet), weighted
by metric volume.

*(gross Scribner volume - net Scribner volume)/(gross Scribner volume), weighted by gross Scribner volume.

®Total gross Scribner volume in board feet.

Total net Scribner volume in board feet.

"Total net metric volume in cubic feet.
deduction conventions.

8The observed gross Scribner board foot to net cubic foot ratio. The net cubic foot value is calculated using
firmwood-based rounding and defect deduction conventions.

°The observed net Scribner board foot to net cubic foot ratio.
firmwood-based rounding and defect deduction conventions.

This volume is calculated using firmwood-based rounding and defect

The net cubic foot value is calculated using
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Table 2. Twenty-two subpopulations of size 20,000 ordered by increasing metric log

diameter!'
Metric Total Total Total
volume weighted Scribner gross net net
average defect Scribner | Scribner metric BFDCF | BFDCF
diameter | length | taper | fraction volume volume volume GN NN
6.30 32.99 | 0.1171 | 0.175E-1 | 0.860E+6 | 0.845E+6 | 0.234E+6 3.67 3.61
6.97 38.14 | 0.0890 | 0.475E-2 | 0.121E+7 | 0.121E+7 | 0.314E+6 3.86 3.84
7.40 35.54 | 0.1082 | 0.100E-1 | 0.114E+7 | 0.113E+7 | 0.323E+6 3.52 3.48
7.92 36.57 | 0.1031 | 0.125E-1 | 0.134E+7 | 0.133E+7 | 0.371E+6 3.62 3.57
8.66 37.71 | 0.0833 | 0.105E-1 | 0.160E+7 | 0.158E+7 | 0.430E+6 3.72 3.68
9.25 36.23 | 0.0962 | 0.128E-1 | 0.177E+7 | 0.175E+7 | 0.467E+6 3.79 3.74
9.45 38.40 | 0.0812 | 0.753E-2 | 0.211E+7 | 0.209E+7 | 0.513E+6 4.10 4.07
9.89 36.24 | 0.1018 | 0.178E-1 | 0.220E+7 | 0.216E+7 | 0.527E+6 4.17 4.10
10.24 37.63 | 0.0918 | 0.150E-1 | 0.266E+7 | 0.262E+7 | 0.581E+6 4.58 4.51
10.99 37.97 | 0.0879 | 0.107E-1 | 0.300E+7 | 0.297TE+7 | 0.661E46 4.54 4.49
11.34 36.67 | 0.1012 | 0.177E-1 | 0.294E+7 | 0.289E+7 | 0.678E+6 4.34 4.27
11.97 37.24 | 0.0986 | 0.156E-1 | 0.326E+7 | 0.321E+7 | 0.761E+6 4.29 4.22
12.60 37.64 | 0.0912 | 0.143E-1 | 0.358E+7 | 0.353E+7 | 0.839E+6 4.27 4.21
13.09 36.65 | 0.1065 | 0.164E-1 | 0.385E+7 | 0.379E+7 | 0.882E+6 4.37 4.30
13.72 36.80 | 0.1047 | 0.182E-1 | 0.442E+7 | 0.434E+7 | 0.962E+-6 4.59 4.51
14.26 37.48 | 0.1038 | 0.209E-1 | 0.494E+7 | 0.484E+7 | 0.105E+7 4.69 4.59
15.13 36.93 | 0.1064 | 0.227E-1 | 0.558E+7 | 0.545E+7 | 0.115E+7 4.83 4.72
15.82 37.35 | 0.1052 | 0.199E-1 | 0.642E+7 | 0.630E+7 | 0.127E+7 5.06 4.96
16.87 37.24 | 0.1075 | 0.180E-1 | 0.738E+7 | 0.725E+7 | 0.142E+7 5.19 5.10
18.12 37.23 | 0.1117 | 0.219E-1 | 0.876E+7 | 0.857E+47 | 0.163E47 5.39 5.27
20.12 37.08 | 0.1165 | 0.269E-1 | 0.113E+8 | 0.110E+8 | 0.196E+7 5.77 5.61
27.07 35.51 | 0.1312 | 0.450E-1 | 0.194E+8 | 0.186E+8 | 0.303E+7 6.42 6.13

1See the footnotes to Table 1.
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Table 3. Eleven subpopulations of size 40,000 ordered by increasing metric log diam-

eter!
Metric Total Total Total
volume weighted Scribner gross net net
average defect Scribner | Scribner metric BFDCF | BFDCF

diameter | length | taper | fraction volume volume volume GN NN
6.68 35.94 | 0.1010 | 0.100E-1 | 0.207E+7 | 0.205E+7 | 0.549E+6 3.78 3.74
7.68 36.09 | 0.1055 | 0.114E-1 | 0.248E+7 | 0.245E+7 | 0.694E+6 3.57 3.53
8.97 36.94 | 0.0900 | 0.117E-1 | 0.337E+7 | 0.333E+7 | 0.896E+6 3.76 3.71
9.67 37.31 | 0.0916 | 0.128E-1 | 0.430E+7 | 0.425E+7 | 0.104E+47 4.14 4.08
10.64 37.81 | 0.0897 | 0.127E-1 | 0.566E+7 | 0.559E+7 | 0.124E+47 4.55 4.50
11.67 36.97 | 0.0998 | 0.166E-1 | 0.621E+7 | 0.610E+7 | 0.144E+47 4.31 4.24
12.85 37.13 | 0.0990 | 0.154E-1 | 0.743E+7 | 0.732E+7 | 0.172E+47 4.32 4.25
14.00 37.16 | 0.1042 | 0.196E-1 | 0.936E+7 | 0.917E+7 | 0.202E+47 4.64 4.55
15.49 37.15 | 0.1058 | 0.212E-1 | 0.120E+8 | 0.117E+8 | 0.242E+47 4.95 4.85
17.54 37.24 | 0.1098 | 0.201E-1 | 0.161E+8 | 0.158E+8 | 0.305E+47 5.30 5.19
24.34 36.13 | 0.1254 | 0.383E-1 | 0.308E+8 | 0.296E+8 | 0.499E+7 6.16 5.93

Table 4. Five subpopulations of size 90,000 ordered by increasing metric log diameter!'

Metric Total Total Total
volume weighted Scribner gross net net
average defect Scribner | Scribner metric BFDCF | BFDCF
diameter | length | taper | fraction volume volume volume GN NN
7.15 36.26 | 0.1018 | 0.103E-1 | 0.514E+7 | 0.508E+7 | 0.138E+47 3.72 3.69
9.47 37.32 | 0.0897 | 0.119E-1 | 0.906E+7 | 0.895E+7 | 0.223E+47 4.06 4.01
11.65 37.33 | 0.0953 | 0.152E-1 | 0.141E+48 | 0.138E+8 | 0.322E+47 4.36 4.30
14.34 37.04 | 0.1050 | 0.193E-1 | 0.220E+8 | 0.215E+8 | 0.468E+47 4.69 4.60
21.33 36.60 | 0.1186 | 0.315E-1 | 0.501E+8 | 0.486E+8 | 0.868E+7 5.78 5.60
Table 5. All 455,382 logs!
Metric Total Total Total
volume weighted Scribner gross net net
average defect Scribner | Scribner metric BFDCF | BFDCF
diameter | length | taper | fraction volume volume volume GN NN
| 15.85 | 37.17 ] 0.1073 | 0.237E-1 | 0.101E+9 | 0.983E+8 | 0.203E+8 | 4.97 4.85

1See the footnotes to Table 1.
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Figure 1 — The FY, F5, and F3 factors.
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Figure 2 — Board feet from the Scribner table for a length fixed at 12 feet (assumes West Coast
truncation rules).
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Figure 3 — Board feet from the Scribner table for a diameter fixed at 9 inches (assumes West Coast
truncation rules).
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Figure 7 — From the fits of the observed ratios to the predicted ratios, 45 subpopulations.
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Figure 9 — Calibrated predicted ratios versus observed ratios, 45 subpopulations of size 10,000.
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Figure 10 — Calibrated predicted ratios versus observed ratios, 22 subpopulations of size 20,000.
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Figure 11 — Calibrated predicted ratios versus observed ratios, 11 subpopulations of size 40,000.
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Figure 12 — Calibrated predicted ratios versus observed ratios, 5 subpopulations of size 90,000.
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