distributions
Class CDF_Weibull3

java.lang.Object
  |
  +--distributions.CDF_Weibull3

public class CDF_Weibull3
extends java.lang.Object

Currently, this class contains methods to calculate the cumulative distribution function (CDF) of a 3-parameter Weibull distribution and the inverse of the CDF.


Constructor Summary
CDF_Weibull3()
           
 
Method Summary
static double w3cdf(double lambda, double beta, double mu, double x)
          This method calculates the 3-parameter Weibull cumulative distribution function.
static double w3inv(double lambda, double beta, double mu, double p)
          This method calculates the inverse of the 3-parameter Weibull cumulative distribution function.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

CDF_Weibull3

public CDF_Weibull3()
Method Detail

w3inv

public static double w3inv(double lambda,
                           double beta,
                           double mu,
                           double p)
This method calculates the inverse of the 3-parameter Weibull cumulative distribution function.

Parameters:
lambda - The 3-parameter Weibull scale parameter. In \LaTeX notation, the distribution function is 1 - \exp(-(\lambda (x - \mu))^{\beta}).
beta - The 3-parameter Weibull shape parameter. In \LaTeX notation, the distribution function is 1 - \exp(-(\lambda (x - \mu))^{\beta}).
mu - The 3-parameter Weibull location parameter. In \LaTeX notation, the distribution function is 1 - \exp(-(\lambda (x - \mu))^{\beta}).
p - p must lie between 0 and 1. w3inv returns the 3-parameter Weibull cdf inverse evaluated at p.

w3cdf

public static double w3cdf(double lambda,
                           double beta,
                           double mu,
                           double x)
This method calculates the 3-parameter Weibull cumulative distribution function.

Parameters:
lambda - The 3-parameter Weibull scale parameter. In \LaTeX notation, the distribution function is 1 - \exp(-(\lambda (x - \mu))^{\beta}).
beta - The 3-parameter Weibull shape parameter. In \LaTeX notation, the distribution function is 1 - \exp(-(\lambda (x - \mu))^{\beta}).
mu - The 3-parameter Weibull shape parameter. In \LaTeX notation, the distribution function is 1 - \exp(-(\lambda (x - \mu))^{\beta}).
x - x must be greater than mu. w3inv returns the 3-parameter Weibull cumulative distribution function evaluated at x.