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1 Introduction

This note describes some methods for converting linearly constrained nonlinear optimization
problems into unconstrained nonlinear optimization problems. It is is written by a user of
nonlinear optimization routines rather than by a numerical analyst. The author's under-
standing is that some of these methods increase the nonlinearity of a problem, and thus they
should be avoided. However, if one only has access to unconstrained routines, these methods
permit one to attack constrained problems. The author would appreciate receiving point-
ers to constrained nonlinear optimization software written in Java. The author would also
appreciate tips on better methods for converting constrained problems into unconstrained
problems.

2 2-sided bounds on a parameter

The constraint is of the form

a � � � b (1)

where a; b are �xed bounds and � is the parameter. In this case we replace the problem of
optimizing f(�;�), where � is the vector of the remaining parameters, with the problem of
optimizing f(g(�0);�) where �0 is unconstrained, and

g(�0) = (a+ b)=2 + (b� a)=2� cos(�0): (2)

3 1-sided bounds on a parameter

The constraint is of the form

a � � (3)

where a is a �xed bound and � is the parameter. In this case we replace the problem of
optimizing f(�;�), where � is the vector of the remaining parameters, with the problem of
optimizing f(g(�0);�) where �0 is unconstrained, and

g(�0) = a+ (�0)2: (4)
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4 Linear equality constraints

The constraints are of the form (p � n)

a11�1 + : : :+ a1n�n = b1
...

ap1�1 + : : :+ apn�n = bp

(5)

or 0
BB@

a11 : : : a1n
...

ap1 : : : apn
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or

A� = b

where (without loss of generality) the p rows of A are linearly independent and

Ap = the �rst p columns of A

is invertible. In this case we optimize f(�) by letting �p+1; : : : ; �n vary in an unconstrained
manner and then obtaining �1; : : : ; �p via
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where An�p is the matrix formed by the last n� p columns of A.

4.1 Aside | Testing for linear independence

In the material above we assume that the rows of A are linearly independent. This is per-
missible because it is assumed that we have already removed redundant constraints. The
process of identifying and removing redundant constraints is straightforward, but in compli-
cated cases it will require some programming. If the independence of the linear constraints
is not immediately apparent from the structure (for example, linear independence is clear
if di�erent constraints involve non-overlapping sets of �'s), then we need to perform a test
of the assumption of linear independence. We can do this by performing a singular value
decomposition of A.

The singular value decomposition of A is (here we assume p � n)

A = Up�p

0
BBBB@

1 0 : : : 0 0
0 2 0 : : : 0

...
0 0 : : : 0 p

1
CCCCAVT

p�n

= UDVT ;
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where U is an orthogonal matrix, the columns of V are orthonormal to each other, and
1 � 2 � : : : � p � 0 are the singular values of A. Thus the rank of A is just the number
of nonzero singular values. Because of the limitations of computer arithmetic, the null i's
will not in general be exactly equal to zero. We need to determine a threshold value. If a
i lies below that threshold, we take it to be equal to zero and conclude that the rows of A
are not linearly independent. A threshold value that is suggested in the numerical analysis
literature (for example, Golub and Van Loan (1996)) is

kAk � (the machine precision):

Our experience suggests that

threshold = kAk � (the machine precision)� 10

might be a better rule of thumb. Recall that

kAk =

vuut pX
i=1

nX
j=1

a2ij =
q
trace(AAT )

=
q
trace(UDVTVDUT )

=
q
trace(UD2UT )

=
q
trace(D2UTU) =

q
21 + : : :+ 2p:

For double precision arithmetic on 32 bit computers one would useq
21 + : : :+ 2p � 10�15

as the threshold value.
A Java translation of the Linpack singular value decomposition routine can be found at

http://www1.fpl.fs.fed.us/linear algebra.html.

4.2 Aside | Removing redundant constraints

If the p rows of A are not linearly independent, then either the linear equality constraints
cannot be simultaneously satis�ed or some of the constraints are redundant and can be
removed. One can determine whether the linear constraints can be simultaneously satis�ed,
and, at the same time, remove redundant constraints by following a simple algorithm.

Accept the �rst row of A as your �rst set of constraints (assuming, of course, that the
a1j's are not all zeros). Then work through rows 2 through p. Suppose that you have
accepted as many as possible linearly independent constraints from rows 1 through i. Add
row i+ 1 to these rows and perform a singular value decomposition of the resulting matrix.
If none of the singular values is zero, then add the i + 1th row to the collection of linearly
independent constraints, and continue.

If one of the singular values is zero, then the i + 1th row is a linear combination of the
previously accepted constraints. Let aTi+1 denote the i+ 1th row of A. We have

C� = ai+1 (6)
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where cT1 , . . . , c
T
j (j � i) are the previously accepted constraints, and the columns of

C are c1, . . . , cj. We use a linear equation solver (see, for example, the Java versions
of the Linpack routines dqrdc and dqrsl in the linear algebra Java package available at
http://www1.fpl.fs.fed.us/linear algebra.html) to obtain �.

Now the previously accepted constraints have the form

CT� = r (7)

for some (known) vector r. Thus, from (6) and (7), we should have

bi+1 = aTi+1� = �TCT� = �T r: (8)

If bi+1 6= �T r then the i+ 1th constraint is not compatible with the preceding i constraints
and there is no solution to the constrained nonlinear optimization problem. If we do have
bi+1 = �T r then the i + 1th constraint is redundant and can be deleted. We then continue
on and consider the i+ 2nd constraint.

4.3 Aside | Reordering the columns of A so that Ap is of full

rank

Let us assume that we have removed any redundant constraints so that A is of full rank
p � n. This still does not guarantee that the �rst p columns of A are linearly independent.
To ensure that they are, we proceed in a manner similar to the manner in which we proceeded
while testing for the linear independence of the rows of A. However, we now focus on the
columns of A rather than the rows. We can again use the singular value decomposition. If
a column turns out to be a linear combination of the previously accepted columns, then we,
for example, move it to the position of the last column and change the ordering of the �'s in
a corresponding manner. After we have found p linearly independent columns we stop.

5 Linear two-sided bounds constraints

The constraints are of the form

c1 � a11�1 + : : :+ a1n�n � d1
...

cp � ap1�1 + : : :+ apn�n � dp

: (9)

De�ne

A �

0
BB@

a11 : : : a1n
...

ap1 : : : apn

1
CCA :

If the p rows of A are linearly independent, then we can proceed. (The rows of A are often
not linearly independent. See section 7 below.) As described in section 4.3 we can reorder
the columns of A so that

Ap = the �rst p columns of A
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is invertible.
Now the constraints embodied in (9) hold if and only if

L1 � a11�1 + : : :+ a1p�p � U1

...
Lp � ap1�1 + : : :+ app�p � Up

(10)

where
Li = ci � (ai;p+1�p+1 + : : :+ ain�n) (11)

and
Ui = di � (ai;p+1�p+1 + : : :+ ain�n): (12)

Thus we can optimize f(�1; : : : ; �p; �p+1; : : : ; �n) subject to the constraints (9) by letting
�01; : : : ; �

0

p; �p+1; : : : ; �n vary in an unconstrained manner and obtaining �1; : : : ; �p via

0
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�p

1
CCA = A�1

p

0
BB@

v1
...
vp

1
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where
vi = (Li + Ui)=2 + (Ui � Li)=2� cos(�0i):

6 Linear one-sided bounds constraints

Assume that the constraints are of the form

c1 � a11�1 + : : :+ a1n�n
...

cp � ap1�1 + : : :+ apn�n

: (13)

De�ne

A �

0
BB@

a11 : : : a1n
...

ap1 : : : apn

1
CCA :

If the p rows of A are linearly independent, we can proceed. (The rows of A are often not

linearly independent. See section 7 below.) As described in section 4.3 we can reorder the
columns of A so that

Ap = the �rst p columns of A

is invertible.
Now the constraints embodied in (13) hold if and only if

L1 � a11�1 + : : :+ a1p�p
...

Lp � ap1�1 + : : :+ app�p

(14)
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where
Li = ci � (ai;p+1�p+1 + : : :+ ain�n) (15)

Thus we can optimize f(�1; : : : ; �p; �p+1; : : : ; �n) subject to the constraints (13) by letting
�01; : : : ; �

0

p; �p+1; : : : ; �n vary in an unconstrained manner and obtaining �1; : : : ; �p via

0
BB@

�1
...
�p

1
CCA = A�1

p

0
BB@

v1
...
vp

1
CCA

where
vi = Li + (�0i)

2:

7 What do you do if the rows of A are not linearly

independent?

As we saw in section 4, if the constraints are equality constraints, then we can remove
redundant constraints and obtain an A whose rows are linearly independent. However, if
the constraints are inequalities, this is not so easily done. For example, suppose that the
f that we are trying to optimize is a function of the variables x and y, and suppose that
we want to optimize f on the triangle with vertices (0,0), (1,0), and (0,1). Appropriate
constraints in this case would be 1� x+0� y � 0, 0� x+1� y � 0, and 1� x+1� y � 1.
In this case in the notation of the preceding sections, aT3 = aT1 + aT2 . That is, the a for the
third constraint is a linear combination of the a's corresponding to the �rst two constraints.
However, the third constraint is not redundant. Thus we cannot simply delete it as we did
in the case of equality constraints. However, in special cases there are still tricks that we
can perform.

For example, we can turn the problem posed above into an unconstrained one by a
relatively simple reparameterization. First we let a point move along the line segment from
(0,0) to (1,0). That is

p1(�1) =

 
0
0

!
+ �1 �

 
1
0

!

where 0 � �1 � 1. Then we let a point move along a line segment from (0,1) to p1(�1).

p2(�1; �2) =

 
0
1

!
+ �2 �

 
p1(�1)�

 
0
1

!!
: (16)

where 0 � �2 � 1. It is clear (at least after a little thought) that as �1 and �2 vary over their
permitted ranges that p2 moves over the required region. So we have transformed the three
constraints on x and y into two-sided bounds constraints on �1 and �2. In section 2 we saw
how to replace �1 and �2 with unconstrained �01 and �02 in this case.

This approach should work for any two-dimensional convex �gure. That is, one parameter
moves a point around the perimeter of the �gure and a second parameter moves a point from
some �xed vertex toward the �rst point. This parameterization should yield full coverage of
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the interior and boundary of the convex �gure. And as noted above these parameters would
be subject to 2-sided bounds constraints and could thus be replaced by 2 unconstrained
parameters as was done in section 2.

8 An example of a nonlinearly constrained optimiza-

tion problem that could be replaced by an uncon-

strained optimization problem

This is a problem with which we are all familiar, but it is useful to note that it is an
example of the simpli�cation that we are seeking. Suppose that we wanted to optimize the
nonlinear function f on the unit sphere (including the interior of the sphere). That is, we
want to optimize f(x; y; z) subject to the nonlinear constraint x2 + y2 + z2 � 1. We simply
reparameterize by the usual polar coordinates: 0 � � < 2�, 0 �  � �, 0 � r � 1, and then,
as we saw in section 2, we can replace these parameters in turn with three unconstrained
parameters.

9 Summary

We have looked at some tricks that permit one to replace constrained nonlinear optimization
problems with unconstrained nonlinear optimization problems. If high quality constrained
optimization software is available it should probably be used rather than a combination of
these tricks and high quality unconstrained optimization software. However, the author is
not currently aware of high quality public domain constrained nonlinear optimization soft-
ware that is written in Java. Thus these tricks in combination with the Java translation
of UNCMIN might prove useful. If a reader is aware of constrained nonlinear optimization
software written in Java, the author would appreciate hearing about it. Also, if a numerical
analyst or user of optimization software knows of other recommended tricks for converting
constrained nonlinear optimization problems into unconstrained ones, the author would ap-
preciate hearing about those. Finally, as of 3/13/02 this is an unreviewed (although checked
by the author) document, and if a reader detects errors, the author would appreciate hearing
about them.
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