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The Decline and Fall of Type II Error Rates 
Steve Verrill and Mark Durst 

For general linear models with normally distributed random er 

rors, the probability of a Type II error decreases exponentially as 
a function of sample size. This potentially rapid decline reem 

phasizes the importance of performing power calculations. 

KEY WORDS: Asymptotic relative efficiency; Experimental 
design; Hodges-Lehmann efficiency; Linear models; Mills' ra 

tio; Minimum detectable difference; Noncentral F; Normal tail; 
Pitman efficiency; Power; Sample size. 

1. INTRODUCTION 

Introductory statistics students learn that hypothesis tests in 
volve two types of error. If we reject a true null hypothesis, a 

Type I error occurs. If we fail to reject a false null hypothesis, 
a Type II error occurs. Students become adept at using tables 
to find critical values that control the probability of a Type I 
error. However, the calculations needed to control the probabil 

ity of a Type II error can be complex and typically receive less 

emphasis in introductory courses. This is unfortunate as the sci 

entists and engineers who take these courses and later design ex 

periments sometimes fail to perform proper power calculations 

(power 
= 1 ? Prob(Type II error)). Instead their sample sizes 

are sometimes based on past practice or on available resources. 

As a result their experiments can be underdesigned (sample sizes 
are too small) or overdesigned (sample sizes are unneccessarily 

large). See Lenth (2001) for an overview of sample size issues. 
In one sense a researcher does not design an experiment to 

achieve a certain Type I error probability. Instead, at the anal 

ysis stage, the researcher just enters a critical value table via 

the targeted probability and the appropriate degrees of freedom. 
Given that the scientist's model and distribution assumptions 
hold, the scientist is assured that the desired Type I error prob 
ability will result. Thus an analysis of Type I error is relatively 
easy to incorporate into an introductory statistics course or into a 

plan of experimentation. On the other hand, achieving a desired 
level of Type II error requires much more forethought. Prior to 

performing an experiment, a researcher must specify: 

1. What Type I error rate (probability of falsely detecting an 

effect) are they willing to accept? 
2. What differences do they want to be able to detect? Perhaps 

a 5% difference in means is not of practical importance, 
but the researcher wants to be fairly certain of detecting a 

25% difference. 

3. What is the variability in the property that is being tested? 
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4. What Type II error rate (probability of failing to detect a 

real effect) are they willing to accept? 

Given this information they can calculate the necessary sample 

sizes for a wide variety of experiments. 
If the necessary sample size is beyond the capability of the re 

searcher, then they must be willing to consider obtaining more 
resources or abandoning the experiment rather than waste re 

sources on an experiment that is unlikely to be definitive. If the 

necessary sample size is smaller than what standard practice 

dictates, then the researcher can save resources by adopting the 

size dictated by the power calculations. 
The problem with failing to understand the implications of 

power calculations goes beyond a possible waste of resources. 

It goes to the validity of claims produced by improperly designed 
experiments. If the intent is to demonstrate that one process is 
better than another (e.g., that one mean is larger than another), 

and it turns out that the difference observed in the experiment 
is not statistically significant, researchers are generally sophis 
ticated enough to note that a difference might still exist but that 
the sample sizes were simply too small to detect the difference 

statistically. They can always try again with a better designed 
experiment. They do not necessarily draw the possibly false con 

clusion that no difference exists. However, it is sometimes the 

case that researchers simply want to establish that a new (pos 

sibly cheaper) product or process is no worse than an existing 
product or process. If their experiment detects no statistical dif 

ference between the new and old products, then they might be 

tempted to conclude that the claim that they wanted to establish 
is indeed established. If, however, their experiment was not prop 

erly designed and their sample sizes were too small, the Type 
II error rate (the probability of failing to detect a difference that 

actually exists) associated with the experiment could be large 
and the lack of statistical significance would not represent good 
evidence that the new process is no worse than the old. 

This article demonstrates that for a large class of experiments 

(those whose results can be represented by linear models with 

normally distributed random errors) the probability of a Type II 
error declines exponentially as a function of sample size. That 

is, 

Prob(Type II error) = 1 ? power < K exp(?b x n) (1) 

for constants K, b > 0, where n is a measure of the sample 

size. Results of this type are well known to those who work 
with asymptotic relative efficiencies (ARE) (see, e.g., Serfling 
1980, sec. 10.5). However, the ARE approach might be some 

what opaque to many statistics students. Here we work through 

calculations that should be more accessible. We first illustrate 
the exponential rate of decrease in a special case, and then we 

establish it for general linear models. 
The potentially rapid decline in the probability of a Type II 

error as sample size increases has important implications for re 

searchers as they design their experiments. There can be a fairly 

sharp boundary between successful and unsuccessful experi 

? 2005 American Statistical Association DOT 10.1198/000313005X70353 The American Statistician, November 2005, Vol. 59, No. 4 287 

This content downloaded  on Thu, 31 Jan 2013 18:36:15 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ments. An underdesigned experiment can fairly rapidly become 
a successful and then an overdesigned experiment. At the close 

of Section 3, we provide the addresses of two Internet-based lin 

ear model power calculation programs that we have developed 
to aid in the design of experiments. 

2. A SIMPLE COMPARISON OF TWO 
POPULATIONS, KNOWN VARIANCE 

To characterize this case, we need a useful fact about the 

tail behavior of normal distributions. Versions of this fact have 

appeared previously in the statistical literature. See, for example, 
the discussions of "Mills' ratio" in Kendall and Stuart (1977) 
and Johnson and Kotz (1970). The particular form of the fact 
described in Lemma 1 is due to Gordon (1941). His proof is 

considerably more complex than the proof we give here. 

Lemma 1. For x < 0, 

x2/(x2 + 1) < <&(*)/ (4>(x)/(-x)) < 1, (2) 

and for x > 0, 

x2/(x2 + 1) < (1 
- 

*{x))l{<t>{x)/x) < 1, (3) 

where $(x) is the N(0,1) cumulative distribution function and 

(?)(x) is the N(0,1) probability density function. 

Proof: Let x < 0. We have 

4>{x)/{-x) = 
y^i(0(?)/(-?))d? 

= f <p(t)(i+(i/t2))dt. 
J ?oo 

Thus, 

rX fX 

&(x) = / </>(t)dt< / qb(t)(l + (l/t2))dt = (j)(x)l(-x), 

and 

px 
4-2 x)/{-x) = / ^(?)(l + (l/?^))d? 

J ? OO 

< / ch(t)(\ + (l/x2))dt = $(x)(x2 + l)/x2 

and result (2) follows. 
Because for x > 0, 1 

? 
$(x) 

= 
$(?x), and qb(x) 

? 
(j)(?x), 

result (3) is an immediate consequence of result (2). 
Now suppose that we have n/2 observations from a N(/?i, a2) 

population and n/2 from a N(/?2, o2) population, o known. We 
would like to test the null hypothesis that ?jli = ?jl2 versus the 
alternative that ?i\ ̂ ?i2. In this case the test statistic is the ratio 
z = (X2 

? 
Xi)/(o^/A/n), and we reject the null hypothesis if 

z < ?a or z > a for an appropriate critical value, a. 

The power associated with this test equals 

Prob 

$ 

288 General 

Thus, 

Prob(Type II error) = 1 ? power 

$(a_(M2-Mi)V^ 

so 

and 

2(7 

-$(-a-(M2"^l)v^N) 
(4) 

Prob(Type II error) < $ (a - 
?^1ZJ^.\ 

? (5) 

Prob(Type II error) < l - Q> f-a - 
i^__^lM^ 

. (6) 

By Lemma 1, for p2 > pi and n large enough, the quantity 
on the right side of Equation (5) is of the order 

(..o^y^i 
(P2 

- 
Vi)y/? 

which, for large n, is dominated by 

exp | 
- 

i 
a - 

-=-x-^- | r? | / 
(-?-^? 

- a 

0_ (_n2 /9 , a(?2-?i)Vn (M2~Mi)2n eXP 
V 

7 2a 8a2 

which, in turn, is dominated for large n by exp (?6 x n) for any 
b less than (p2 

~ 
Pi)2/(8er2) 

From result (6), the p2 < pi case follows in a similar fashion. 

Although this is a large sample result, a roughly exponen 
tial decline in the probability of a Type II error can actually 
hold for "small" samples. For example, for a .05 significance 

level, o/(p2 
- 

m) 
= 1, and n = 10, 20, 30,40, 50, the Type 

II error probabilities for a z test of the equality of the means 
are .65, .39, .22, .11, and .06. (In this example, the coeffi 

cient of variation is assumed to be roughly equal to the per 
cent difference in the means. Hence the o/(?i2 

? 
pi) 

= 1 re 

lationship between standard deviation and the difference in the 

means.) The logs of these values are plotted against n in Fig 
ure 1. This plot appears to be approximately linear. That is, 
Prob(Type II error) ? Kexp(?b x n). 

3. THE GENERAL LINEAR MODEL 
Now suppose that we have the linear model 

y~N(X/3,a2I), 

where y is the m x 1 vector of responses, X is the m x p design 
matrix, and ? is the p x 1 parameter vector. Following Scheff? 

(1959), suppose that we want to test the hypothesis cf/3 
= 771, 

..., 
c^/3 

= 
nq where the c[/3's 

are estimable and the c?'s 
are linearly independent. [For example, in a balanced one-way 

analysis of variance with J "treatments" and / replicates of each 

treatment, m = I x J, p 
= 

J, and X = 
(xi,..., xp), where 

xj 
= 

(0,..., 0 1,..., 1 0,..., 0) and Xj contains I x (j 
- 

1) 
initial 0's, I l's, and I x (J 

? 
j) ending 0's. In this case we 

are interested in testing the null hypothesis that ft = ft = 
= 

?p or ft 
- 

ft = = ft 
- 

ft 
= 0. We have cj 

= 
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Figure 1. The approximately linear decline of ln(Prob(Type II error)) with increasing sample size in the two sample example. In this example, 
we have n/2 observations from a N(ni, o2) population, and n/2 observations from a N(fi2, o-2) population, a is known, and we use a z statistic 

to test the hypothesis ?11 = \i2 versus the alternative ?i-? ̂ /?2. The probability of a Type II error is given by Equation (4). In the plot we present 
In (probability of a Type II error) versus n for the case in which cr/(n2 

? 
?i) 

= 1 

(1 
- 1 O,..., 0),..., cj_! 

= 
(1 0,..., 0 

- 
1), and Vl 

= - 

T]p_i 
= 

0.] Because the c[/3's 
are estimable and the c?'s are 

linearly independent, we can find unique linearly independent 
vectors, ai, ..., a.q, that lie in the linear span of the columns of 

X and satisfy af X = 
cf. 

Let A = 
(ai,...,ag), C = 

(ci,..., cq), and rjT 
= 

(rji,..., rjq). Under the null hypothesis, ATX/3 
= CT? = 77 

and 

ATy 
- N (ATX/3, o2ATA) 

= N (77, o2 ATA) , 

or 

ATy-r7-N(0,cr2ATA), 

and 

Under the alternative hypthesis, ATX/3 ^ r? and 

(A^Ar^A^y-r,) 

^N((ArA)-1/2(ATX/3_T?))(T2I?x^ 
Thus, under the null hypothesis, the standardized F test numer 
ator sum of squares 

SSN = (ATy 
- 

,7)T(ATA)-1(ATy 
- 

rj)/a2 

is distributed as a central chi-squared random variable with q de 

grees of freedom, while under the alternative hypothesis, SSn 
is distributed as a noncentral chi-squared with q degrees of free 
dom and noncentrality parameter 

Am = (ATX/3 
- 

77)T (ATA)_1 (ATX/3 
- 

77) /o2. (7) 

In this case the Type II error probability associated with 
the standard ANOVA F test equals the probability that a non 
central Fq^rn_r^xrn random variable lies below the appropri 

ate critical value, xm, derived from a central Fqim-r 
ran 

dom variable (here r is the rank of the X matrix). As the 

noncentrality parameter increases this probability decreases. 

Larger differences among treatment means (resulting in larger 

(ATX/3 
- 

rj)T (ATA)_1 (ATX/3 
- 

77) values) and smaller 
variances will lead to larger values of Am and a reduction in the 

probability of a Type II error. More importantly for the purposes 
of this article, increased sample sizes will lead to larger non 

centrality parameters and thus reductions in the probability of a 

Type II error. 

How, specifically, does the noncentrality parameter change as 

the sample size changes? Suppose that we multiply the design by 
a factor of k so that n = kxm. Then the new nxp design matrix 
contains k copies of the original design matrix and the new a? 
must contain k copies of the original a?, each copy divided by 
k. Thus, the new noncentrality parameter is just k times the old 

noncentrality parameter, and 

An = Afcxm = k x Am = n x (Am/ra) ex n. (8) 

The new denominator degrees of freedom in the standard linear 
model F test statistic is n ? r. 

As noted earlier, in this case the Type II error probability 
equals the probability that a 

Fq^n_r^\n random variable will lie 

below the appropriate critical value, xn, derived from a cen 

tral Fq^n-r random variable. [Note how the four inputs dis 

cussed in Section 1 are incorporated into the calculation of ap 
propriate sample size: 1) The Type I error probability appears 
in the choice of the critical value. 2) The differences show up 
as nonzero ATX/3 

? 
77 values in the noncentrality parameter 

calculation. 3) The variability appears as o2 in the noncentrality 
parameter calculation. 4) Given abase design and corresponding 
noncentrality parameter, Am, the targeted Type II error proba 

bility is obtained by finding the lowest k value such that the 

Type II error probability calculated using noncentrality param 
eter An = A/cxm = k x Am falls below the targeted level. An 
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Figure 2. The approximately linear decline of ln(Prob(Type II error)) with increasing sample size in the 3 x 3 ANOVA example. In this example, 
we have a 3 x 3 ANOVA design with 2, 3, 4, 5, or 6 replicates per cell. We use a standard F statistic to test the hypothesis that the three means 

associated with the first factor are all equal versus the alternative hypothesis that there are differences among the three means. The probability of a 

Type II error in this case is given by result (9). The mean values for the three levels of the factor were taken to be .9, 1.0, and 1.1. The a value was 

taken to be . 15. In the plot we present ln(probability of a Type II error) versus n = 3 x 3 x number of replicates. 

acceptable design is then one that is k replicates of the base 

design.] 

so from (11) we would expect 
\2?\ 

Because xn decreases as n increases, we have 

Prob(Type II error) = 1 ? power 
== 

-Tq,n 
? 

r,\n\Xn) <C r q^n_r_?\n \X) (y) 

for an appropriate fixed x. 

To proceed with our demonstration of an exponential decline 

in the Type II error probability as a function of sample size we 

now need the following theorem. Its proof is provided in the 

appendix of Verrill and Durst (2005). 

Theorem 1. Let v2 ?> oo as n ? oo. Let v\ and x be fixed. 

Then for any d > 2, there exists an Nd > 0 such that, for all 

A > 0, n > Nd yields 

FVl,v2Ax) <Kdexp(-X/d) (10) 

for some constant Kd. 

Results (9) and (10) yield 

Prob(Type II error) = 1 ? power < Kd exp(?Xn/d) (11) 

for n > Nd, or, since, by (8), An = n(Am/m), 

Prob(Type II error) = 1 ? power < Kd exp 

(12) 

for any constant d > 2 and n > Nd. This establishes that the 

probability of a Type II error declines exponentially as a function 

of n. 

Note that in the case considered in Section 2, 

x _ (M2 
- 

Pi)2n K~ 4^ 
290 General 

n{Xm/m) 
d 

Prob(Type II error) = 1 ? power < K? exp (-?-7?- ) 
\ 4cHa / 

for any d > 2. This is equivalent to the bounding rate identified 
at the end of Section 2. 

As in the simple case discussed in Section 2, although the 

exponential decrease in the probability of a Type II error is an 

asymptotic result, a roughly exponential decline can hold for 

small samples. For example, given a 3 x 3 ANOVA design, a 

.05 significance level, \i values for one of the factors equal to 

.9, 1.0, and 1.1, a a value of .15, and 2, 3, 4, 5, and 6 repli 

cates per cell, the Type II error probabilities for the standard F 
test of the equality of the /?'s are .56, .35, .20, .11, and .06. 

(See http://wwwl.fpl.fs.fed.us/power.glm.html for a program 

that permits general linear model power calculations to be per 

formed using the World Wide Web. See http://wwwl.fpl.fs.fed. 
us/power.html for a simpler program that calculates power for 

balanced ANOVAs.) The logs of these values are plotted against 
n in Figure 2. Again this plot appears to be approximately linear. 
That is, Prob(Type II error) K exp(?b x n). 

4. DESIGN IMPLICATIONS 

From (12) we can obtain the Anhaif that (approximately) 
halves the Type II error probability. We have 

1/2 
= (Error probability )2/(Error probability) 1 

/ (n2-n1)(Xrn/m)\ 
=exH-d?)' 

or 

Anhaif 
= n2 

- 
n\ 

= d x m x 
ln(2)/Am. 

Thus, large treatment differences or small variances (which yield 
large Am values) can yield very rapid declines in Type II error 
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probabilities. In this case, as noted in the introduction, an un 

derdesigned experiment can fairly rapidly become a successful 
and then an overdesigned experiment. 

5. AN ASIDE ON ASYMPTOTIC RELATIVE 
EFFICIENCIES (ARES) 

In the introduction we remarked that those who study AREs 
are familiar with exponential declines in the probability of a Type 
II error. In particular in the Hodges-Lehmann approach to ARE, 
one fixes the probability of a Type I error and the difference one 
wants to detect, and compares tests based on the rate at which the 

probability of a Type II error declines. Thus, in the normal theory 
linear model case, the focus will in effect be on the constant b 
in (1). A larger b will correspond to an asymptotically more 
efficient test?given a fixed difference that one wants to detect, 
the probability of a Type II error will decline more rapidly. 

On the other hand, in the Pitman approach to asymptotic 
relative efficiencies, one fixes the Type II (and Type I) error 

probability and observes the manner in which the minimal de 
tectable difference declines as sample size increases. (The min 

imal detectable difference is the smallest difference for which 

power > 1 ? the fixed Type II error probability.) In this case 

(constant Type II error probability), the noncentrality parameter 
given by (8) must converge to a constant so we have 

Am oc 1/ra 

or, from (7), (ATX/3 
? 

77), the "difference" that we are try 
ing to detect must be declining as \j^Jn. Thus, as one would 

expect given the equivalence between hypothesis tests and con 
fidence intervals, for fixed Type I and Type II error probabilities, 
the minimal detectable difference declines at the same rate as 
confidence interval lengths. Pitman ARE differences among hy 
pothesis tests will show up as differences in multipliers of the 
basic 1/y/n rate of decline of the minimal detectable difference. 
Smaller multipliers will correspond to more asymptotically effi 
cient tests?given a fixed Type II error probability, the minimal 
detectable difference will be smaller. 

6. SUMMARY 

We have established that for tests of hypotheses in general 
linear models, the probability of a Type II error declines expo 
nentially. To do so, we have made use of a Mills' ratio lemma 

that permits one to approximate the tail behavior of the normal 
distribution and (see Verrill and Durst 2005, appendix) Tang's 
(1938) asymptotic expansion of the noncentral F distribution. 

The potentially rapid decline in the probability of a Type II 
error reemphasizes the importance of performing power calcu 

lations. For reasons of experimental efficiency (and in under 

designed cases, statistical validity), it is important to neither 

underdesign nor overdesign a study. We have provided Web re 

sources that facilitate the performance of linear model power 
calculations. Links to additional Web resources for performing 
power calculations can be found at http://www.stat.uiowa.edu/ 
~rlenth/Power/ and http://members.aol.com/johnp71/javastat. 
html#Power. 

[Received July 2004. Revised June 2005.] 
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