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When Good Confidence Intervals Go Bad: Predictor Sort 
Experiments and ANOVA 

Steve VERRILL 

A predictor sort experiment is one in which experimental 
units are allocated on the basis of the values of a predic- 
tor variable that is correlated with the response. Standard 
ANOVA analyses of predictor sort experiments can lead 
to confidence intervals whose actual coverages are poor 
matches to nominal coverages. Correct coverages can be 
obtained by adjusting confidence interval lengths by appro- 
priate factors, or by performing analyses of covariance. 

KEY WORDS: Analysis of covariance; Analysis of vari- 
ance; Blocked analysis of variance; Concomitant variable; 
Predictor sort sampling. 

1. INTRODUCTION 

This article identifies errors that are likely to be made in 
confidence interval calculations in predictor sort ANOVA 
experiments. Predictor sort sampling in the context of hy- 
pothesis testing is discussed in Verrill (1993). 

To perform a predictor sort, it is necessary to find a pre- 
dictor that can be measured prior to the start of an ex- 
periment and is well correlated with the response being 
investigated. Experimental units are then sorted and allo- 
cated on the basis of this predictor. For example, in a one- 
way predictor sort ANOVA that compares K treatments, 
the specimens associated with the top K predictor values 
are randomly assigned to the K treatments, then the spec- 
imens associated with the next largest K predictor values 
are randomly assigned to the K treatments, and so on. If 
there are I such groups of specimens, this allocation process 
yields a two-way ANOVA in which each of the I blocks is 
composed of specimens with similar predictor values. In 
agricultural experimentation, typical predictors are weight 
and age in the case of animal subjects. Past plot yields can 
be used to form blocks in the case of field studies. In the 
behavioral sciences, predictors such as IQ, hours of train- 
ing, or performance on a pre-test have been used to form 
blocks. 

Predictor sort experiments are discussed by Cox (1958, 
example 3.3); Steel and Torrie (1960, sec. 8.2); Kirk (1968, 
sec. 5.1'); Finney (1972, sec. 13.17); Ostle and Mensing 
(1975, example 11.3); Myers (1979, chap. 6); and Snedecor 
and Cochran (1989, example 6.13.1). 

Steve Verrill is Mathematical Statistician, U.S. Department of Agricul- 
ture Forest Products Laboratory, Madison, WI 53705 (E-mail: steve@wslO. 
fpl.fs.fed.us). 

In general, if an experiment could have been analyzed 
as an analysis of covariance, but, instead, the values of the 
covariate are used to define blocks, the experiment is based 
on predictor sort sampling. 

Predictor sort experiments are quite common in wood 
strength research. For example, a scientist might be inter- 
ested in the effects of fire retardants on wood strength. 
Typically the scientist obtains a random sample of lum- 
ber from a particular species of wood. Then the lumber is 
sorted by modulus of elasticity (MOE) which can be mea- 
sured non-destructively and is known to be well correlated 
with modulus of rupture. If there are K fire retardants to be 
compared, the lumber specimens with the K largest MOE 
values are randomly assigned to the K retardant treatments, 
then the K specimens with the next largest MOE values are 
randomly assigned to the K treatments, and so on. Wood 
scientists motivate this procedure by stating that it makes 
pre-treatment strength distributions "reasonably equivalent" 
among the K groups of test specimens. Depending upon 
their level of statistical sophistication the scientists go on 
to analyze the resulting data via unblocked or blocked anal- 
yses of variance, or analyses of covariance. 

As noted in Verrill (1993) (see also David and Gun- 
nik 1997), the correlations among the order statistics of 
the predictor induce correlations among the responses 
so that the standard ANOVA assumptions are not satis- 
fied for a predictor sort experiment. Verrill demonstrates 
that blocked ANOVAs are still essentially valid and that 
simply modified unblocked ANOVAs can also be per- 
formed on predictor sort datasets. However, one must 
be careful with power calculations. A program that per- 
forms predictor sort power calculations and specimen al- 
locations can be run over the World Wide Web. See 
http://www 1.fpl.fs.fed.us/ttweb.html. 

The current article establishes that standard ANOVA 
analyses of predictor sort experiments can yield confidence 
intervals whose actual coverages are poor matches to nom- 
inal coverages. The article then discusses techniques that 
can correct this problem. 

2. POOR CONFIDENCE INTERVAL COVERAGE 

If the predictor sort nature of an experiment is neglected, 
then the confidence interval that is constructed for the re- 
sponse associated with level ji of factor 1 is 

Y.ji ... it x S//IxKx xKF (1) 

where t is the appropriate critical value, and s is the root 
mean residual sum of squares from the ANOVA. Verrill 
(1993) established that in a predictor sort case, if the prob- 
lem is treated as a K1 x ... x KF ANOVA with I replicates 
per cell, the mean residual sum of squares converges in 

38 The American Statistician, February 1999, Vol. 53, No. 1 (?) 1999 American Statistical Association 



0 

.~~~~~~~~~~~~~ / 

0.LO --K 8 0 
/1 

? C' f- K 4 ?(z 

.'o0 K 2 |,: ~ ~ K // , 

o~~~K _ 

0.70 0.75 0.80 0.85 0.90 0.95 1.0 

correlation 

Figure 1. Unblocked ANOVA, Confidence Interval Inflation Factor. 

probability to (Ty as I increases to infinity. If the problem 
is treated as as one involving I blocks with 1 replicate per 
cell, the mean residual sum of squares converges in proba- 
bility to (1 _ p2)U2, where p is the correlation between the 
predictor used in the sort and Y. 

In the theorem established in Section 4, it is shown that 
the appropriate large sample value for s in (1) is 

u52(1 -p2 + p2/Kj) 

rather than ory or ory 1/T-p2. This discrepancy is the 
source of the coverage problems. 

Let 

Rub(p,K) 1/ ((1 p2 + K)) 
and 

Rb(p, K) _ ((1 _ p2)/(1 _ p2 + P2/K))1/2 

In Figure 1 values of Rub (p, K) are plotted. These R 
values approximate the factor by which confidence interval 
sizes are incorrectly inflated when a standard unblocked 
ANOVA is performed in a predictor sort case. 

In Figure 2 values of Rb (p, K) are plotted. These values 
approximate the factor by which confidence interval sizes 
are incorrectly deflated when a standard blocked ANOVA 
is performed in a predictor sort case. 

In Figure 3 values of 

2 x JD (D-1(.975) x Rub(p, K)) - 1 

are plotted. These values approximate the actual confidence 
levels that are associated with nominal 95% confidence in- 
tervals in the unblocked case. 

Finally, in Figure 4 values of 

2 x j (D- 1(.975) x Rb(p, K)) - 1 

are plotted. These values approximate the actual confidence 
levels that are associated with nominal 95% confidence in- 
tervals in the blocked case. 

From these plots it is clear that, given a predictor sort de- 
sign, for higher p values, the confidence interval lengths and 
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Figure 2. Blocked ANOVA, Confidence Interval Deflation Factor. 

coverages produced by standard ANOVA analyses are unac- 
ceptable. Unfortunately, there are many situations in which 
the correlation between the predictor and the response can 
be quite high; for example, when the predictor is a mea- 
surement made on an individual before a treatment and the 
response is a similar measurement made on the same indi- 
vidual after the treatment. 

3. HEURISTIC JUSTIFICATION OF THE 
THEOREM 

To keep things relatively simple, let us focus on a one- 
way situation with I blocks and K treatments. We can think 
of a predictor sort specimen allocation in the following 
manner. A response value, Y, associated with a specimen 
is given by 

y= MY +Uy (p(X -,Ux)/ux + p2Z 

where (X - ,ux) /ax and Z are independent N(O, 1)'s. Prior 
to the experiment we have values for X. We rank the speci- 
mens on the basis of their associated X values and then ran- 
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Figure 3.Unblocked ANO VA, Actual Coverage of a Nominal 95% 
confidence Interval. 
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domly allocate the top K specimens to the first block, the 
next K to the second block, and so on. Let Yl, . . .., YI1 be 
the responses for the specimens that receive the first treat- 
ment. We are interested in a confidence interval on ,uy + ,ul, 
where ,Ul is the effect of the first treatment. We take as our 
estimate of this value 

I 

i = _Yi1/I = my + Al 
i=l1 

+Ory (p XI EWil/I + p2X EZl /I) 

where the Z's are iid N(O,1) and independent of the W's, 
and Wil is randomly drawn from the ith block of (X - 
Ux)/Yx's. Then 

var(Y) = Uy (p2var (Wil/I) 

- + (1-_ p2)var z~i/i) 

ry (p var ( Wl /I) + 
(1-p2)/I) 

Thus, to convince ourselves that the theorem makes sense, 
we only need to be able to understand how 

var ( Wi/I) 1/I K. (2) 

We have 
I KX 

var E E Wik/IK) = var (the sum of all 
i=l k=l 

the centered and scaled X's/IK) - 1/IK 

since this is just the variance of an average of IK iid 
N(O,1)'s. Now the claim is that, since we require one ob- 
servation from each of the I blocks of adjacent X order 
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Figure 4. Blocked ANO VA, Actual Coverage of a Nominal 95% Con- 
fidence Interval. 

statistics in our sum of I W's, our average of I W's is 
a close enough approximation to the average of all IK 
(X -,ux) /ax's that result (2) holds. This intuitive closeness 
is established rigorously in the proof of the Theorem. 

4. THE THEOREM 

Theorem 1. Assume that the predictor variable and the 
variable of interest, Y, have a joint bivariate normal dis- 
tribution with correlation p. Denote the variance of Y by 
u'. Suppose that there are I blocks and F factors with 
K1,..., KF levels. Let the allocation of samples be as de- 
scribed in Section 1. (For a multiple factor case, enough 
adjacent experimental units would be chosen at a time to 
provide one additional observation for each cell.) Let Yjl.. 
be the standard estimate of mean response for the jlth level 
of factor 1. Then 

IxK2x xKF (Yjl..... - E (Yj1.....)) 

X N (, y(1 - p2+p2/K,)) (3) 

as I -? oc. The analogous results hold for factors 2,... ,F. 

Proof We have 

Yijl...jF = E (Yijl ...jF)+oy (pXiJl...jF + 1 -p2Zijl...jF), 

where the Xijl ... j.'s, j G {1,. . . ,K},, *.., JF E 

.1)... ,KF}, are a randomization of the ith group of order 
statistics from Ix K, x . .. x KF iid N(O,1)'s, the Zijl,..j, s 

are iid N(O,1), and the X's and Z's are independent. 
To establish (3), we need only show that 

vIxK2x**xKF 

I K2 KF 

x E E . . . E Xijl j2 ...jFl (I X K2 X ... X F)| 

i=l j2=l jF=1 

X N(O, IIK, ). (4) 

We have 

/Ix Klx K2x xKF 

I K, K2 KF 

X E E E * E Xijlj2... jF 
i=1 ji=l j2=1 jF=i 

/(Ix Klx K2x ...x KF)) 

D 

-?N(0, 1) 

so 

/I K, K2 KF 

X L K K Xij1 j2 .. F 

/ (I XK1 XK2 X..XKF) ) 

?N(O,1/(KlXK2X..XKF)). (5) 
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Now by the Lemma established in the appendix of Verrill 
(1993), 

I K2 KF 

V ZZ ..X. E Xijlj2...jF/(Ix K2 x ...x XKF) 

i=l i2=1 iF=1 

I Ki K2 KF 

E E E .. E Xijlj2 ...jF 
i=1 ji=l j2=1 jF=l 

/(I x K X K2 x ... x KF) 

< > (X(iKlK2 ...KF) -X((i-l)KlK2 KF+1)) /I 

i=l1 

< V (X(IKlK2 ...KF) - X(1)) /I -4 0. (6) 

Here X(iK1K2,KE) is the largest value in the ith group 
of adjacent X order statistics, X((i-l)Kl K2 ...KF+1) is the 
smallest order statistic in this group, X(1) is the smallest 
overall order statistic, and X(IK1K2 .KF) is the largest. Re- 
sults (5) and (6) establish (4). 

5. RECOMMENDATONS FOR PRODUCING 
PREDICTOR SORT CONFIDENCE INTERVALS 

In the predictor sort case, there are three obvious solu- 
tions to problems of incorrect confidence interval cover- 
ages. Given the underlying relationship 

Y = I-L + oy (p(X - mx) /0x + Z ),z (7) 

where the predictor X is known, the best solution is to make 
explicit use of X in an analysis of covariance. Provided that 
model (7) holds, actual coverages will always equal nominal 
coverages in this case. 

Alternatively, in the unblocked case, one could obtain an 
estimate of p from the data and then divide the root mean 
residual sum of squares by Rub(p, K). In the blocked case, 
one would divide by Rb(p, K). 
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Figure 5. Simulation Results, K = 10, p = .9, Dotted Lines at 1 - 
coverage Equal to .04 and .06. 

Simulations indicate that for I large enough any of these 
methods suffice. However, for small I the latter two meth- 
ods can yield poor results. Tables 1 and 2 provide guidance 
on the number of replications needed to yield reasonable 
results for the latter two methods. The values in the Tables 
are the I values that will yield actual coverages that lie be- 
tween .94 and .96 for one-way ANOVAs. These values were 
estimated from simulation runs. In these simulation runs p 
was estimated as the average of the cell sample correlations. 

For example, to obtain the 11 value in the K = 10, p = 
.9 cell of Table 1, 7 simulation results were smoothed: At 
each of I = 2, 3, 5, 10, 20, 40, and 80, 4,000 trials were 
performed. This yielded the seven coverage estimates .8720, 
.8990, .9273, .9348, .9500, .9505, and .9507. A regression 
program was used to fit the model 

arcsin( >/1 - coverage) - arcsin( .05) 

C + C2/I + C3 

and then this model was used to estimate the I at which the 
actual coverage first fell between .94 and .96. The data and 
fits for the K = 10, p = .9 case are plotted in Figure 5. 

As noted previously, the values in Tables 1 and 2 are ap- 
propriate for one-way ANOVAs. For other ANOVAs they 
are only rough guides. The simulation program that pro- 
duced the coverage estimates that were used to develop the 
tables can be run on additional cases over the World Wide 
Web at http://wwwl.fpl.fs.fed.us/ttconf.html. It can han- 
dle multiway ANOVAs. 

Table 1. / Needed to Ensure Coverage Between .94 and .96, One-Way 
Unblocked ANOVAs, Dividing the Root Mean Residual Sum of Squares 

by Rub(p,K) 

p 
K .7 .8 .9 .95 .99 

2 2 2 4 4 4 
4 3 3 2 2 2 
6 4 4 6 7 11 
8 4 5 11 11 19 
10 4 5 11 20 20 

Table 2. I Needed to Ensure Coverage Between .94 and .96, One-Way 
Blocked ANOVAs, Dividing the Root Mean Residual Sum of Squares 

by Rb(p,K) 

p 
K .7 .8 .9 .95 .99 

2 12 14 29 69 >80 
4 6 11 19 31 >80 
6 5 1 1 17 35 >80 
8 5 6 15 36 >80 
10 3 6 15 25 >80 

6. SUMMARY 

It is important that statistics practictioners be able to rec- 
ognize predictor sort situations. If specimens are ranked on 
the basis of a measured characteristic that is believed to 
be correlated with the response being investigated, and the 
specimens are placed into blocks on the basis of this rank- 
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ing, then the experiment needs to be treated as a predictor 
sort experiment rather than as a simple randomized block 
design. 

Verrill (1993) discussed power calculations and hypoth- 
esis testing in a predictor sort context. A program that 
performs predictor sort power calculations and specimen 
allocations can be run over the World Wide Web at 
http://wwwl.fpl.fs.fed.us/ttweb.html. 

Given a predictor sort experiment, if confidence inter- 
vals are of interest, then a careful analysis of covariance 
should be performed. Alternatively, in the unblocked case, 
one could obtain an estimate of p from the data and then 
divide the root mean residual sum of squares by Rub (p, K). 
In the blocked case, one would divide by Rb (p, K). The 
sample sizes that are needed to justify this alternate ap- 
proach in the one-way case are given in Tables 1 and 2 
for a variety of p and K combinations. The nature of the 
coverage in a particular case can be investigated via a sim- 
ulation program that can be run over the World Wide Web 
at http://wwwl.fpl.fs.fed.us/ttconf.html. This program can 
simulate multiway ANOVAs. 

[Received March 1997. Revised January 1998.] 
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