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whole is 8.5%. Even though sample mean company R&D 
intensity (3.7%) is slightly higher than mean federal R&D 
intensity (3.6%), /3 is much closer to /2 than it is to /3. 

Although the ratio of R&D expenditure to sales is the 
most commonly used measure of R&D expenditure, an al- 
ternative, and perhaps equally valid, measure is the ratio of 
R&D scientists and engineers employed to total employ- 
ment. On the second row of Table 2, I present regression 
coefficients and other statistics for exactly the same sample 
of firms based on this alternative measure of R&D intensity. 
The point estimates of f13l and /32 are very close to their 
counterparts based on the ratios of R&D expenditure to 
sales, and the hypothesis f13 = /32 is again rejected. But 
the standard deviation of federal R&D intensity is now only 
41% higher than that of company R&D intensity; as Table 
1 reveals, this causes a substantial increase in w. The cor- 
relation coefficient is somewhat lower, -.09 compared with 
.02, tending to reduce w slightly. But w(1.43, -.0920) = 
.3179, which is almost twice as large as (81% higher than) 
the weight corresponding to the R&D expenditure data. 
Consequently, the estimate of /3 is 76% higher than the 
estimate based on the R&D expenditure data. 

To summarize, the R&D expenditure- and exployment- 
intensity data yield virtually identical estimates of the returns 
to R&D classified by source of funds, but because of dif- 
ferences in the weight w, they yield rather different estimates 
of the returns to total R&D. This example illustrates the 
need to exercise caution in the interpretation of the coef- 
ficient of an aggregate when the coefficients of its com- 
ponents are believed to differ. 

[Received June 1988. Revised July 1989.] 
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We've Got the Positive Correlation BLUEs 
STEVE VERRILL, MICHAEL AXELROD, and MARK DURST* 

Intuition suggests that combinations of positively correlated 
estimates of a quantity have greater variances than combi- 
nations of independent estimates of the quantity. In this note 
we identify circumstances under which best linear unbiased 
estimators (BLUEs) based on positively correlated mea- 
surements are superior to BLUEs based on independent 
measures. 

1. INTRODUCTION 

Scientific workers often face situations in which they wish 
to combine multiple unbiased estimates of a single quantity. 
These estimates may come from different laboratories, ex- 
periments, or measuring devices. Under certain circum- 
stances (e.g., the laboratories share samples, researchers, 
or information), the estimates might be correlated. 

The presence of correlation is not necessarily bad, and 
statisticians know that negative correlation can be exploited 
to their advantage. If, for example, we wish to combine 
two measurements, where a positive error in one tends to 

be associated with a negative error in the other, the best 
linear combination of these measurements will have a smaller 
variance than would be possible if the measurements were 
uncorrelated. In fact, if the correlation is - 1, the combi- 
nation will have a zero variance regardless of how imprecise 
the original measurements were. What is not generally ap- 
preciated is that even positive correlation can be useful. 

Intuition suggests that positive correlation should increase 
the variance of a combination because measurements with 
large positive correlations would seem to be almost a re- 
dundancy. Intuition is correct when the measurements have 
equal precision, but sometimes wrong when the precisions 
differ. The purpose of this note is to demonstrate that if the 
variances of the individual measurements are sufficiently 
different and the positive correlations are sufficiently high, 
the quality of the combined estimates will improve. 

2. THE BEST LINEAR UNBIASED 
ESTIMATOR (BLUE) 

Let yl, . . , y,, be our estimates, and assume that E(yi) 
= /i. Let L denote the (known) covariance matrix of y. An 
easy application of the theory of generalized least squares 
gives us 

/IBLUE = (1) 

(BLUE is best linear unbiased estimator), which has vari- 
ance 

v= iii'S,-11. (2) 
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Now consider the special case in which var(yi) = o-? 
and cov(yi, yj) = po-1o-j. Then, for p = 0, Equations (1) 
and (2) become the familiar 

/IBLUE 3() ) (. 2) 

and 

V= 0? (4) 

For p 7$ 0, we have 

= diag(o-i)[(l - p)I + pll']diag(oJ). (5) 

Let di denote o- 1* From Equation (5) we have 

1'1-11 = d'[(l - p)I + pll']-ld, 

where d' (d1 ... d,j). Noting that 

[(1 - p)I + pll']-l 

I p'll 
i-p (-p)( + (n -l)p) 

we obtain 

1 
V = 

(1 - p)(l + (n - l)p) 
[1 + (n - l)p] E7=l d? - p(' Il di)2 

Now we can draw several conclusions. 

3. POSITIVE CORRELATION IS BAD 

Suppose that r2= = ... 0= 2 Then (6) 
reduces to 

V = o2(1 + (n - 1) p)/n. (7) 

Soforp= -11(n- 1),V=0, andforp=0,V= o-2/ 
n. As p increases to 1, V increases to o-2, and our n ob- 
servations have collapsed down to a single observation. This 
is the source of the notion that positive correlation is "bad." 

4. POSITIVE CORRELATION IS GOOD 

Suppose, however, that o-? $ o-j2 for some i, j. As p 
increases to 1, the numerator in (6) converges to 0, but the 
denominator converges to 

n Ed _( di) n ,(di-d)2 > 0 (8) 

for o-i #7 0>j, some i, j. (Here, d denotes the average of the 
di's.) Thus V converges to 0 as p goes up to 1. See Figure 
1 for a plot of V versus p in several cases in which n = 2. 

We can make this result more intuitive by considering 
the following extreme case. Let Y, and Y2 be perfectly pos- 
itively correlated, unbiased estimates of ,a, with oJ, #i oJ2 
Then Y1 = ju + oX18 and Y2 = yt + OJ28 (the same e). 
Solving for ju we obtain the unbiased, zero-variance esti- 
mator 

(cr2Y1 - cr1 Y2)/((J2 - cr ). 

Finally, having established that positive correlation can 
yield better results than no correlation, it would be nice to 
know exactly how large the positive correlation must be for 
this to hold. We answer this question by setting Expression 
(6) equal to the variance at p = 0 and solving for p. This 
yields 

(i -p)( + (n -l)p) 1 

[1 + (n - l)p] ;2 1 d- p(Es= di)2 2 

or 

(E12=I di)2 - DI=i d2 

Pbreak-even n-i 1 

-1- n I2 (d,- d)2 

n - 1 D2I= d? 

Thus, as the spread in the di's relative to DI'= I dl goes up, 
the amount of positive correlation needed to improve upon 
no correlation goes down. 

5. EXAMPLE 

Consider the case n = 2. Assume that o-I < J2. By taking 
the derivative of (6) with respect to p and setting it equal 
to 0, we find that the worst possible variance is achieved 
at p = o / o(2. Plugging this value back into (6), we see 
that the maximum value is -2-. From Equation (9), we have 

Pbreak-even = 2/1(olo/(2 + o(2/1 )* (10) 

In Table 1 and Figure 1 we consider four cases. In all four 
cases, the p = 0 variance was set to 1 and we solved for 
o(J, o2, maximum variance = o-(J and Pbreak-even- From this 
work we see that a 4 to 1 standard deviation ratio leads to 
BLUE improvements over the p = 0 case for p ? .471. A 
10 to 1 ratio reduces this breakeven correlation to .2. 

Remark. For illustrative purposes, in the foregoing cal- 
culations we restricted ourselves to the special case in which 
the off-diagonal correlations are all equal. More generally, 
Equations (2) and (4) imply that correlation will be "good" 
whenever 

As we have seen, this will certainly occur (for example) 
whenever any pair of measurements has sufficiently differ- 
ent variances and a sufficiently high positive correlation. 

Further Reading. The interested student can pursue the 
topics of generalized least squares and BLUEs in Searle 
(1971), Seber (1977), or Kendall and Stuart (1979). Kleij- 
nen (1974) discussed the use of negative correlation (an- 
tithetic variates) as a variance reduction technique in simulation 
studies. Ku (1969) provided a classic reference that provides 
an introduction to some of the problems associated with 
interlaboratory testing. 

[Received March 1988. Revi.sed August 1988.] 
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Figure 1. The numbers indicate the o-1lo>2 values associated with the curves. In all four cases, the variance at p = 0 was 1. Thus the 
curves cross the dashed line above the break-even p's. 

Table 1. Break-Even Correlation as a Function of the Standard 
Deviation Ratio 

Maximum 
variance Break-even 

0J1 / 2 'O l O2 (at p= 071102) p 

.75 1.2500 1.6667 1.5625 .9600 

.50 1.1180 2.2361 1.2500 .8000 

.25 1.0308 4.1231 1.0625 .4706 

.10 1.0050 10.050 1.0100 .1980 
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